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Organization

• Lecture with script: http://comphys.unibas.ch/teaching.htm

Simple exercises: Traditional analytic problems and numerical problems (on your

own laptop?)

Lecture together with exercises give 4 credit points if exercises are done well and the oral

exam is passed. Prerequisite for being admitted to oral examination on the material of the

course: successful solution of at least half of the number of points for each exercise set.

(Easy exercises give 1 point, medium 2 and difficult 3 points)
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Ab-initio electronic structure calculations
Matter is composed of electrons and atomic nuclei. Within the framework of condensed

matter physics, chemistry, biology and materials science one is not interested in the struc-

ture of the nuclei. The nuclei are just considered to be charged point particles. The basic

laws governing systems of electrons and nuclei are the many body equations of quantum

mechanics. These equations govern therefore all phenomena of matter at the atomistic

scale. In principle any condensed matter problem can therefore be solved by using quan-

tum mechanics.

Ab-initio electronic structure calculations solve numerically the quantum mechanical

equations. Ab initio means that the theory behind such calculations is based on ”first

principles”. i.e. on the basic physical laws. The only input for an ab-initio electronic

structure calculation are the atomic charges of the constituent atoms. Ab-initio method

can be subdivided into two categories, wave-function and density functional methods.

In wave-function methods one calculates directly the many-body wave-function. These

methods are also called quantum-chemistry methods or post Hartree-Fock methods and

they can solve the quantum mechanical equations with arbitrary precision. Unfortunately

the computer time grows tremendously when very high precision is required. For this

reason wave-function methods can essentially only be applied to small molecules, but not

to larger systems. Because of these limitations, density functional methods have become

very popular. Because they are computationally much cheaper they can be applied to sys-
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tems containing up to a few hundred atoms. In contrast to wave-function methods they can

not systematically be improved in accuracy, but they give reasonable accuracy for a wide

range of properties. The bond lengths and angles of molecular geometries and crystalline

structures can be predicted with errors of a few percent. Vibrational frequencies and the

bulk modulus with errors of 5 to 10 percent. However, there are also properties whose ac-

curacy is insufficient in density functional theory. When one compares different structures

very small energy differences can be important. Experimentally one can measure energy

differences with an accuracy of 1 kcal/mole (about 0.04 eV/molecule). The best density

functional schemes give only an accuracy of .2 per atom in molecules. Errors in transition

state energies can be up to a 100 percent. Density functional methods can well describe

covalent, metallic and ionic bonds. Hydrogen and short range van der Waals interactions

are described with moderate accuracy, long range van der Waals interactions are entirely

missing in standard density functional schemes.
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The virtual chemistry/physics laboratory

Simulation methods are replacing traditional experimental methods in academic as well

as in industrial research. Instead of doing research in a traditional lab one does it in the

’virtual’ lab. Such a virtual chemistry/physics laboratory needs the following ingredients:

• Models of the physical reality, e.g. density functional theory for the description of

interacting electronic systems or elasticity theory for the description of macroscopic

bodies

• Algorithms that allow us to solve the fundamental equations of these models nu-

merically

• Fast computers

• Efficient implementations of the algorithms on modern computers

Due to large research efforts worldwide considerable progress is to be expected in all these

fields and simulation will become the workhorse of research and development in various

industries such as in the pharmaceutical and in the chemical industry
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Topics

• The Born-Oppenheimer approximation

• The Hartree-Fock method

• Configuration Interaction methods

• Quantum Monte Carlo

• Density Functional methods

• Tight binding methods

• Linear scaling algorithms for electronic structure calculations

• Pseudopotentials

• Basis sets for electronic structure calculations

• Diagonalization and minimization algorithms

• Quantum molecular dynamics

0-4



• Calculation of various properties such as forces, stress, phonons, excitations and

magnetic properties

• Overview over existing electronic structure codes
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Atomic units

All equations in this course will us atomic units. These units are formally obtained by

setting h̄ = me = e = κ0 = 1, where κ0 = 4πε0. In this way important atomic properties

have unit values

• charge of an electron = 1 (instead of 1.60 ×10−19 C)

• mass of an electron = 1 (instead of 9.11 ×10−31 kg)

• Angular momentum, h̄ = 1 (instead of 1.05 ×10−34 J s

• Bohr radius of hydrogen atom a0 =
h̄2

mee2 = 1 (instead of .529 ×10−10 m)

• Ground state energy of hydrogen atom − 1
2

mee4

h̄2 = − 1
2

(instead of -2.18 ×10−18 J)

Because many other atomic and molecular properties are related to the above quantities,

they will also have numerical values that are of the order of unity. For instance

• Bond lengths are of the order of the Bohr radius

• The binding energy of a molecule is typically a fraction of the ground state energy

of the hydrogen atom
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• The electric dipole moment of a molecule is typically of the order of ea0 = 1 (instead

of 8.45 ×10−30 C m)
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A brief repetition of the single particle Schrödinger

equation

The time independent single particle Schrödinger equation is given by

H φi(r) = εiφi(r) (1)

where

H =−1

2
∇2 +V (r) (2)

The eigenvalue εi gives the energy of the i-th state To solve this equation on a computer,

we have to discretize it. One expresses in most cases the eigen-functions as a linear

combination of a set of so-called basis functions Uk(r).

φi(r) = ∑
k

uk,iUk(r) (3)

We will assume that the basis functions are orthogonal, i.e that
∫

Ul(r)Uk(r)dr = δk,l .

Substituting Eq. 3 into Eq. 1 one obtains

H ∑
k

uk,iUk(r) = εi ∑
k

uk,iUk(r)
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Multiplying from the left by Ul(r) and integrating, one obtains

∑
k

uk,i

∫
Ul(r)H Uk(r)dr = εi ∑

k

uk,i

∫
Ul(r)Uk(r)dr = εiul,i

Introducing the Hamiltonian matrix Hl,k

Hl,k =
∫

Ul(r)H Uk(r)dr (4)

we obtain the following eigenvalue problem

∑
k

Hl,kuk,i = εiul,i (5)

Eq. 5 is the discretized version of the continuous Schrödinger equation Eq. 1. Introducing

a vector ~ui that contains the expansion coefficients of the i-th eigenfunction Eq. 5 can be

rewritten in matrix vector notation

H~ui = εi~ui (6)

Exercise [1pt]: Prove for the 1-dim case Schrödinger equation that H (Eq. 4) is symmetric
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The Born Oppenheimer approximation

A condensed matter system is in essence just a collection of Nat atomic nuclei and N

electrons. The Born Oppenheimer approximation justifies treating the nuclei as classical

particles in the electronic Schrödinger equation. A priori both the nuclei and the electrons

have to be treated quantum-mechanically and are therefore described by the combined

electron-nuclei ground state wave-function Ψen(R1, ...,RNat ,r1, ...,rN) that is an eigen-

function

H en(R1, ...,RNat ,r1, ...,rN)Ψ
en(R1, ...,RNat ,r1, ...,rN) = Een Ψen(R1, ...,RNat ,r1, ...,rN)

(7)

of the Hamiltonian

H en(R1, ...,RNat ,r1, ...,rN) =
1

M

Nat

∑
i=1

−1

2
∇2

Ni

︸ ︷︷ ︸

T n

(8)

+
Nat

∑
i=1

i−1

∑
j=1

ZiZ j

|Ri−R j|
+

N

∑
i=1

−1

2
∇2

ri
+

N

∑
i=1

i−1

∑
j=1

1

|ri− r j|
−

N

∑
i=1

Nat

∑
j=1

Z j

|ri−R j|
︸ ︷︷ ︸

H

where ∇2
Ni

= M
Mi

(
∂2

∂X2
i

+ ∂2

∂Y 2
i

+ ∂2

∂Z2
i

)

and ∇2
ri
= ∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i

. M is the mass of a proton
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in atomic units which has the numerical value of 1836.1. Mi
M

is thus the atomic mass in

units of the proton mass. In addition to the combined electron-nuclei wave-function Ψen

there exist the electronic wave-functions Ψk(R1, ...,RNat ,r1, ...,rN) that are by definition

eigenfunctions of the electronic part of the Hamiltonian

H (R1, ...,RNat ,r1, ...,rN) Ψk(R1, ...,RNat ,r1, ...,rN) = (9)

Ek(R1, ...,RNat ) Ψk(R1, ...,RNat ,r1, ...,rN)

Since H is a hermitian operator the eigenfunctions Ψk form a complete orthonormal set

with respect to the space of the electronic coordinates and the electron-nuclei ground state

wave-function can therefore be expanded in terms of these eigenfunctions

Ψen(R1, ...,RNat ,r1, ...,rN) = ∑
k

Ψk(R1, ...,RNat ,r1, ...,rN)Ψ
n
k(R1, ...,RNat ) (10)

Inserting Eq. 10 into Eq. 7 we obtain

∑
k

(−1

2M
∇2

N +H

)

ΨkΨn
k = Een ∑

k

ΨkΨn
k

−1

2M
∑
k

∇2
NΨkΨn

k +∑
k

EkΨkΨn
k = Een ∑

k

ΨkΨn
k (11)

where ∇2
N = ∑

Nat
i=1 ∇2

Ni
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Introducing the vector

∇N =



















√
M
M1

∂
∂X1√

M
M1

∂
∂Y1√

M
M1

∂
∂Z1

.....
√

M
MNat

∂
∂XNat√

M
MNat

∂
∂YNat√

M
MNat

∂
∂ZNat



















we apply the product rule for differentiation to Eq. 11

−1

2M
∑
k

∇2
NΨkΨn

k +∑
k

EkΨkΨn
k = Een ∑

k

ΨkΨn
k

−1

2M
∑
k

∇N (Ψk∇NΨn
k +Ψn

k∇NΨk)+∑
k

EkΨkΨn
k = Een ∑

k

ΨkΨn
k

−1

2M
∑
k

[
Ψk∇2

NΨn
k +2(∇NΨk)(∇NΨn

k)+Ψn
k∇2

NΨk

]
+∑

k

EkΨkΨn
k = Een ∑

k

ΨkΨn
k (12)
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To obtain an equation for the nuclear wave-functions Ψn
k we multiply Eq. 12 from the left

by Ψi and integrate over dr1, ...drN . Using the orthogonality of Ψk

〈Ψi|Ψ j〉=
∫

dr1, ...drNΨi(r1, ...rN)Ψ j(r1, ...rN) = δi, j

we obtain

−1

2M
∇2

NΨn
i +
−1

2M
∑
k

[
〈Ψi|∇N|Ψk〉(∇NΨn

k)+ 〈Ψi|∇2
N|Ψk〉Ψn

k

]

︸ ︷︷ ︸

non-adiabatic coupling elements

+EiΨ
n
i = Een Ψn

i (13)

In the adiabatic approximation the non-adiabatic terms coupling different electronic states

are neglected and only the electronic ground state (E0, Ψ0) is used for describing the

ground state of the combined electron nucleon system:

−1

2M
∇2

NΨn
0 +
−1

2M

[
2〈Ψ0|∇N|Ψ0〉(∇NΨn

0)+ 〈Ψ0|∇2
N|Ψ0〉Ψn

0

]
+E0Ψn

0 = Een Ψn
0 (14)

The wavefunction Ψen in Eq. 10 is then simply the product of the electronic ground state

wavefunction Ψ0 and a nucleonic part Ψn. Since the non-adiabatic coupling terms in

Eq. 13 are small due to the presence of the factor 1
M

this approximation is justified un-

less there are several electronic energies Ei that are nearly degenerate. This is for in-

stance the case in photochemical reactions that involve more than one electronic surface
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Ei(R1, ...,RNat ). In the Born-Oppenheimer approximation the second factor in Eq. 14 is

neglected as well. The justification is again that it is much smaller than Ei due to the

presence of the factor 1
M

.
−1

2M
∇2

NΨn
0 +E0Ψn

0 = Een Ψn
0 (15)

The interpretation of the Born-Oppenheimer equation 15 is the following. The nucleonic

wave-function is moving in the potential E0(R1, ...,RNat ) generated by the eigenvalues

of the electronic Schrödinger equation. Because of this interpretation E0(R1, ...,RNat ) is

also called the ground state potential energy surface or ground state Born-Oppenheimer

surface. Solving Eq. 15 gives the ground state energy Een of the combined electron-

nucleon system. In the limit of an infinitely large mass the nucleonic wave-function would

be a delta function that is located at the minimum of the potential energy surface. Because

the mass is large but not infinite the nucleonic wave-function is localized in a small region

around this minimum. Since the kinetic energy −1
2M

∫
Ψn

0∇2
NΨn

0 =
1

2M

∫ ∣
∣∇NΨn

0

∣
∣2 is always

positive, Een is always greater than the minimum of the potential energy surface.

Up to now we have only considered the ground state of the combined electron-nucleus

system. Lets now look at the exited states. Being an eigenvalue equation, Eq. 15 allows

to solve not only for the ground state but also for excited states:

−1

2M
∇2

NΨn
0,α +E0Ψn

0,α = Een
0,α Ψn

0,α (16)
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The index α denotes here the different vibrational levels. The energy of vibrational excita-

tions is small, of the order of a meV. If we are also interested in higher energy excitations

(of the order of an eV), we have to consider also the different vibrational levels associated

to the higher Born-Oppenheimer surfaces, associated to electronic excitations i:

−1

2M
∇2

NΨn
i,α +EiΨ

n
i,α = Een

i,α Ψn
i,α (17)
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A schematic view of the entire excitation spectrum of a molecule is shown below.

α=1,2,...Excitations on the first BO surface: i=0,

α=1,2,...Excitations on the second BO surface: i=1,

α=1,2,...Excitations on the third BO surface: i=2,

R

Energy

The difference between Een
i,0 and the minimum on the Born Oppenheimer surface is called

the zero point energy. It represents the smallest possible energy of a nuclear wavefunction.
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Whenever two electronic levels come close to each other, the adiabatic approximation

fails. An example of such a failure is given below. The figure below shows the potential

energy surface of the LiF molecule as a function of the distance d between the two atoms.

In the region of the avoided crossing the adiabatic approximation fails.

en
er

gy

d

avoided crossing region

Li+F−

Li+F−

Li F

Li F
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Exercise [2pts]: The nuclear Schrödinger equation for H2

Let us consider a H2 molecule whose nuclei, both of mass M are constrained to move

along a line with coordinates x1 and x2 respectively. Let us further assume the Born-

Oppenheimer surface is purely quadratic around the equilibrium bond length d. The

equation for the nuclear wavefunction in the Born-Oppenheimer approximation eq. 15

then becomes:

[

− 1

2M

(
∂2

∂x2
1

+
∂2

∂x2
2

)

+ k(x2− x1−d)2

]

Ψn(x1,x2) = Een Ψn(x1,x2) (18)

Transform the equation first to a new system of coordinates:

x = x1− x2

X =
1

2
(x1 + x2)

Use the fact that the ground state solution of the Schrödinger equation in a quadratic po-

tential is a Gaussian exp(− 1
2
( x

α)
2). Determine the value of α and the discrete eigenval-

ues of equation (18). Compare α and the energy of the eigenvalue with typical electronic

length and energy scales for the case where k = 1.
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Phonons in Solids

Multiplying the room temperature with the Boltzmann constant gives 25 meV. Only ex-

citations whose energy is less than or comparable to 25 meV will be populated at room

temperature. The room temperature energy is very small compared to the typical variation

of the Born Oppenheimer surface which is of the order of a few eV’s. Hence the nucleonic

wave-functions will only sample small regions around the minimum E0 = E(R0
1, ...,R

0
Nat

)
of the Born Oppenheimer surface. Translating this statement into a picture where the nu-

clei are particles, means that the amplitude of vibration of the nuclei at room temperature

is small compared to the inter-atomic distance. The reason why the inter-atomic distance

is the right length scale to compare with follows from the fact that a displacement that is

of the order of an inter-atomic distance would give rise to an energy of a few eV. In this

small region around the minimum of the Born Oppenheimer surface, the surface can well

be approximated by a quadratic function. Eq. 16 thus becomes.

[

−1

2M
∇2

N +E0 +
1

2
∑
I,J

(RI−R0
I )DI,J(RJ−R0

J)

]

Ψn
0,α(R1, ...,RNat ) = (19)

Een
0,α Ψn

0,α(R1, ...,RNat )
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The elements of the 3 by 3 matrices DI,J are called the inter-atomic force constants.

DI,J =









∂2E
∂XI∂XJ

∣
∣
∣
RI=R0

I ,RJ=R0
J

∂2E
∂XI∂YJ

∣
∣
∣
RI=R0

I ,RJ=R0
J

∂2E
∂XI∂ZJ

∣
∣
∣
RI=R0

I ,RJ=R0
J

∂2E
∂YI∂XJ

∣
∣
∣
RI=R0

I ,RJ=R0
J

∂2E
∂YI∂YJ

∣
∣
∣
RI=R0

I ,RJ=R0
J

∂2E
∂YI∂ZJ

∣
∣
∣
RI=R0

I ,RJ=R0
J

∂2E
∂ZI∂XJ

∣
∣
∣
RI=R0

I ,RJ=R0
J

∂2E
∂ZI∂YJ

∣
∣
∣
RI=R0

I ,RJ=R0
J

∂2E
∂ZI∂ZJ

∣
∣
∣
RI=R0

I ,RJ=R0
J









One can now find the normal modes Ui of the corresponding classical system of harmonic

oscillators. The normal modes satisfy the generalized eigenvalue problem

∑
J

DI,JUi
J = MIω

2
i Ui

I

and they are orthogonal in the sense that

∑
I

MIU
i
IU

j
I = δi, j

Note that in this notation Ui is the i-th eigenvector of length 3Nat that consists of Nat sub-

vectors Ui
I of length 3. In the same way the 3Nat times 3Nat matrix D is made of of N2

at 3

by 3 matrices DI,J . Since the Ui’s form a complete orthonormal basis any vector can be
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expanded in terms of the Ui’s. This is in particular true for the displacements of the nuclei

around the minimum:

R−R0 = ∑
i

ciU
i

It can be shown that Eq. 19 becomes in the new coordinate systems spanned by the Ui’s

[

E0 +∑
i

(
1

2
ω2

i c2
i −

1

2

∂2

∂c2
i

)]

Ψn
0,α(c1, ...,cNat ) = (20)

Een
0,α Ψn

0,α(c1, ...,cNat )

The solutions of Eq. 20 are products of 1-dim functions

Ψn
0,α(c1, ...,cNat ) = χnα

1
(c1)...χnα

3Nat
(c3Nat )

and their energy is given by

Een
0,α = E0 +

3Nat

∑
i=1

(
1

2
+nα

i

)

ωi (21)

Each vibrational excitation is thus characterized by a set of occupation numbers nα
i . Even

if all the occupation numbers are zero, the energy of the system where the nuclei are
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described by wave-functions is larger than of the system where the nuclei are classical

particles. This additional energy is called the zero point motion energy. Since the potential

energy E(R0
1, ...,R

0
Nat

) does not change under translations of the entire system, there are 3

translation vectors that are eigenvectors of D with eigenvalue ωi equal to zero. Since these

modes give no energy contribution we can take them out of the sum and Eq. 21 becomes

Een
0,α = E0 +

3Nat−3

∑
i=1

(
1

2
+nα

i

)

ωi (22)

A further analysis of the vibrational frequencies of a periodic solid shows that the fre-

quencies form bands that have as quantum numbers the wave-vector k and the band index

i: ω = ωi(k)
In the independent electron picture of a metal, electronic excitations of arbitrarily small

energy exist. From what was said before one might suspect that the adiabatic approxi-

mation therefore fails for a metal. This is fortunately not true. The phonon spectrum of

metals is determined with great accuracy within the adiabatic framework.

Quantum vibrations in molecules

The theory of quantum vibrations in molecules is somewhat more complicated than the

theory of phonons in solids. In analogy to the classical case the vibrational excitations are
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classified into translation, rotations and proper vibrations. Thus Een−E0 is a sum of a

translational contribution Etrans, a rotational contribution Erot and a vibrational contribu-

tion Evib

• Translations

In the classical context, the motion of a molecule can be split up into a part describ-

ing the motion of the center of mass of the system and a part describing the motion

of the individual atoms relative to this center of mass. Such a distinction can not be

carried over straightforwardly into the quantum mechanical context since the posi-

tions of the nuclei (and consequently also the center of mass) are not any more well

defined. One can however see what happens to the nucleonic Schrödinger equation

if one introduces a new set of coordinates. Introducing the center of mass RCM

RCM =
Nat

∑
i=1

Mi

MT

Ri

where MT =∑
Nat
i=1 Mi, the positions of the first Nat−1 nuclei are defined with respect

to this center of mass by

R′i = Ri−RCM
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and the position of the Nat-th nuclei is then consequently given by

R′Nat
=−

Nat−1

∑
i=1

Mi

MNat

(Ri−RCM)

It is then easy to show that the Hamiltonian of Eq. 15 is transformed into

−1

2MT

∇2
RCM

+
Nat−1

∑
i=1

−1

2Mi

∇2
R′i
+

Nat−1

∑
i=1

Nat−1

∑
j=1

1

2MT

∇R′i
∇R′j

+E0(R
′
1, ...,R

′
Nat−1) (23)

For a large molecule the total mass MT is much larger than any individual mass Mi

and the 3rd term in Eq. 23 can be neglected. Then we are indeed left with the first

term that describes the kinetic energy of the center of mass and the second term

that describes the kinetic energy of the motion relative to the center of mass. This

second term will later on be split into a rotational and vibrational term.

Exercise [3pts]: Derive Eq. 23 from Eq. 15

The eigenfunctions of the center of mass part of the Hamiltonian of Eq. 23

−1

2MT

∇2
RCM
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are plane waves and the energy levels are given by

Etrans =
π2

2

1

MT L2
(n2

x +n2
y +n2

z )

L is the length of the periodic box that is used in solving the eigenvalue problem

and nx, ny and nz are the quantum numbers. Note that the density of states becomes

continuous in the limit where L tends to infinity.

• Rotations

For the calculation of the rotational levels, it is generally assumed that the molecule

is a rigid rotator, i.e. one neglects the fact that the molecules stretches due to cen-

trifugal forces that are particularly strong for high rotational excitations. Then the

quantum mechanical levels depend only on the moments of inertia of the molecule.

In the simplest case of a diatomic molecule they are given by

Erot =
J(J +1)

2I

where I is the moment of inertia I = M1R2
1 +M2R2

2 and where the origin is chosen

to be the center of mass.

• Vibrations

The treatment of proper vibrations is analogous to the treatment of phonons in
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solids. One does a Taylor expansion of the potential energy around the equilibrium

positions including the constant and quadratic term. The energy is then expressed

in terms of the eigenvalues ω2
i of the matrix D. In contrast to the case of periodic

boundary condition where the matrix D had 3 zero eigenvalues due to the 3 transla-

tions, the matrix D has now 6 zero eigenvalues (unless the molecule is diatomic in

which case only 2 rotations exist). 3 are again due to translations and 3 are due to

the rotations that leave the energy invariant as well. Hence the vibrational energy is

given by

Evib =
3Nat−6

∑
i=1

(
1

2
+nα

i

)

ωi (24)
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The many electron Schrödinger equation: the physical background

The chemical and physical properties of substances such as atoms, molecules, solids or

liquids are given by the laws of many body quantum mechanics. The central equation

is the non-relativistic many-electron Schrödinger equation. As has been shown before

the corrections due to the quantum nature of the nucleons are relatively small and can

be added in an approximative way relatively easily after the potential energy surface has

been determined. Up to now we have ignored the fact that electrons have a spin. Spin will

from now on be included in our considerations and we introduce therefore the combined

spatial and spin variables x1,x2, ...,xN for the N electron system, where xi = (risi). The

spatial part ri = (xi,yi,zi) is a continuous variable that can take on any value, si is a formal

discrete variable. We will assume that it takes on the value 1/2 for an electron with spin

up and −1/2 for spin down. The electronic Schrödinger equation takes then the form:

H Ψ(x1,x2, ...,xN) = EΨ(x1,x2, ...,xN) (25)

The Operator H is the many electron Hamiltonian for an N electron system, Ψ the many

electron wave-function and E the energy of the system. From a mathematical point of

view , Schrödinger’s equation is an eigenvalue problem where E is the eigenvalue and Ψ
the eigenvector. Unless specified differently we are always interested in the ground-state

wave-function Ψ0 which is associated to the lowest energy eigenvalue E0. Higher energy

eigenstates E1, Ψ1 correspond to excited states.
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|Ψ(x1,x2, ...,xN)|2dr1...drN is the probability of finding a configuration where electron 1

with spin s1 is within r1 and r1 + dr1, electron 2 with spin s2 is within r2 and r2 + dr2,

etc. dri is a short hand notation for dx1 dyi dzi.

Since electrons are indistinguishable particles the probability of finding electron 1 in the

neighborhood of r1 and electron 2 in the neighborhood of r2 must equal the probability

of finding electron 1 in the neighborhood of r2 and electron 2 in the neighborhood of r1.

Since the probability must be equal not only under the exchange of electron 1 and 2, but

under exchange of any pair i, j we have

|Ψ(...,xi, ...,x j, ...)|2 = |Ψ(...,x j, ...,xi, ...)|2

This constraint can be satisfied by a wave-function that is either symmetric or antisymmet-

ric under the exchange of two coordinates. It turns out that a symmetric wave-function cor-

responds to a boson, whereas an antisymmetric wave-function corresponds to a fermion.

Electrons are fermions and hence we have

Ψ(...,xi, ...,x j, ...) =−Ψ(...,x j, ...,xi, ...)

Exercise [2pts]: One can not only exchange one electron pair, but many electron pairs, one

after the other. How many possibilities do exist to arrange the indices of the coordinates

without changing the probability?
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Because of its interpretation as a probability we can normalize the eigenvector of the

Schrödinger equation such that∫
dx1...

∫
dxNΨ∗(x1, ...,xN)Ψ(x1, ...,xN) = 1 (26)

The non-relativistic many electron Hamiltonian is spin independent and has the form

(Eq. 8)

H =
N

∑
i=1

−1

2
∇2

i +
N

∑
i=1

i−1

∑
j=1

1

|ri− r j|
−

N

∑
i=1

Nat

∑
j=1

Z j

|ri−R j|
+

Nat

∑
i=1

i−1

∑
j=1

ZiZ j

|Ri−R j|
(27)

The first term containing the Laplacian represents the kinetic energy of the electrons, the

second term the electrostatic repulsion between the electrons, the third term the attraction

of the electrons to the nuclei and the fourth term the classical electrostatic repulsion be-

tween the nuclei. In the Born Oppenheimer approximation that we have adopted here, the

nuclei are treated as classical point particles with charge Z j, whose position is given by

R j.

Exercise [2pts]: Show that the Hamiltonian (Eq. 27) is a hermitian operator

∫
dx1...

∫
dxNΨ∗a(x1, ...,xN)H Ψb(x1, ...,xN) (28)
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=

[∫
dx1...

∫
dxNΨ∗b(x1, ...,xN)H Ψa(x1, ...,xN)

]∗
(29)

Exercise [1pts]: Show that different eigenstates (Ψ0, Ψ1, Ψ2, ... ) are orthogonal to each

other ∫
dx1...

∫
dxNΨ∗i (x1, ...,xN)Ψ j(x1, ...,xN) = δi, j

Exercise [1pts]: Show that the energy can be written as the following expectation value

E =
∫

dx1...
∫

dxNΨ∗(x1, ...,xN)H Ψ(x1, ...,xN)

Exercise [1pts]: Show that the expectation value of the kinetic energy term is always pos-

itive

Ekin =
∫

dx1...
∫

dxNΨ∗(x1, ...,xN)

(
N

∑
i=1

−1

2
∇2

i

)

Ψ(x1, ...,xN)

Exercise [2pts]: Show that the expectation value of the term representing the interaction
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between the nuclei gives simply the classical expression

En−n =
∫

dx1...
∫

dxNΨ∗(x1, ...,xN)

(
Nat

∑
i=1

i−1

∑
j=1

ZiZ j

|Ri−R j|

)

Ψ(x1, ...,xN)

=
Nat

∑
i=1

i−1

∑
j=1

ZiZ j

|Ri−R j|
(30)

Additional terms need to be added to the Hamiltonian if external fields are present. If for

instance an external electric field is applied that is associated with a potential Vext(r) then

the following term has to be added:

∑
i

Vext(ri)

Electronic structure calculations solve the many electron Schrödinger equation in its exact

form (Eq. 25) or in approximate forms. From a formal point of view, the input for an

electronic structure calculation specifies the positions Rj for the different kind of atoms

characterized only by their charge Z. The output is the total energy E and the wave-

function Ψ. Evidently the Born-Oppenheimer surface is the total energy as a function of

the atomic coordinates. Many other physical observables can be derived from this output.
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Example: The hydrogen molecule H2

Without restriction we can assume that one nucleus is located at the origin and the other

at a distance d along the z-axis. The resulting Hamiltonian is then given by

H =−1

2
∇2

1−
1

2
∇2

2 +
1

|r1− r2|
− 1

|r1|
− 1

|r1−dẑ| −
1

|r2|
− 1

|r2−dẑ| +
1

d
(31)

One can solve the many electron Schrödinger equation for various distances d and obtain

for each distance a total energy E(d) and the associated wave-function. The potential

energy surface (or Born Oppenheimer surface) E(d) of the electronic ground state has the

following form

-1

 0

 1

 2

 3

 1  2  3  4

E
(d

)/
E

_b
on

d

d/d_bond

The minimum of this curve give the bond-length dbond and the binding energy Ebond
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Example: The chemical reaction H +H2→ H2 +H

1 2 3

23

H H2
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Example: Equilibrium lattice constant, pressure, phase transitions of
crystalline materials
In a crystalline (periodic) material one can scale all the atomic coordinates and thus com-

press or expand the crystal. In this way one can calculate the total energy as a function of

the volume of the crystal. Such a plot is schematically given below for the case of silicon

in 2 crystalline phases.
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Such a plot contains a lot of information. The volume for which each curve takes on a

minimum determines the equilibrium volume at zero pressure determining the lattice con-

stant of the material. The curve with the lower minimum determines which structure is

the thermodynamically stable one at zero temperature. This does however not necessarily

mean that the other energetically higher structure can not be found in nature. It can be

a meta-stable structure. Such a case is encountered in the case of carbon. The graphite

structure is lower in energy than the diamond structure, but the time scale for the spon-

taneous transformation from diamond into graphite is so long at ambient pressure and

temperature that nobody has to worry about the stability of his/her diamond. The slope of

the energy versus volume ( Ω ) curve gives the pressure P of the two different phases at a

certain volume since

P =− ∂E

∂Ω

The blue tangent line gives the pressure at which a phase transformation takes place.
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The variational principle

The ground state wave function Ψ0 is the wave-function Ψ which minimizes

E =
∫

dx1...
∫

dxNΨ∗(x1, ...,xN)H Ψ(x1, ...,xN)

Proof: Since the eigenvectors of a Hermitian matrix form a complete set we can expand

Ψ in terms of the eigenstates Ψi

Ψ(x1, ...,xN) = ∑
i

ciΨi(x1, ...,xN) (32)

The normalization condition (Eq. 26) implies

∑
i

c2
i = 1

The expectation value for the energy is given by

E = ∑
i

Eic
2
i

Exercise [2pts]: Prove the 2 above equations

Evidently the minimum is obtained if c0 = 1 with all other coefficients being zero. Hence

E = E0 and Ψ = Ψ0
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Generalizations of the variational principle

• The variational principle does not only hold if the wave-function is written as a

linear combination of basis functions (Eq. 32) but also for any nonlinear parameter-

ization of a wave-function.

• The variational principle can be generalized to excited states. It can be shown that

the M-th excited state ΨM minimizes the energy expectation values

EM =
∫

dx1...
∫

dxNΨ∗M(x1, ...,xN)H ΨM(x1, ...,xN)

under the normalization constraint
∫

dx1...
∫

dxNΨ∗M(x1, ...,xN)ΨM(x1, ...,xN) = 1

and the additional constraint that ΨM is orthogonal to all M− 1 lower eigenstates

Ψm, m = 1, ..,M−1

∫
dx1...

∫
dxNΨ∗M(x1, ...,xN)Ψm(x1, ...,xN) = 0
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Density matrices
The density matrix of a many electron quantum state is defined as

γ(x1, ...,xN ;x′1, ...,x
′
N) = Ψ(x1, ...,xN)Ψ

∗(x′1, ...,x
′
N)

Since a many electron wave-function is a high dimensional and therefore highly compli-

cated quantity, it is difficult to use it for a physical interpretation of numerical results.

Reduced density matrices are most helpful in this context since they are lower dimen-

sional. Particularly useful are the first and second order reduced density matrices γ1 and

γ2 often also called one-particle and two-particle density matrices.

γ1(x1;x′1) = N

∫
dx2...

∫
dxNΨ(x1,x2, ...,xN)Ψ

∗(x′1,x2, ...,xN)

γ2(x1,x2;x′1,x
′
2) = N(N−1)

∫
dx3...

∫
dxNΨ(x1,x2,x3, ...,xN)Ψ

∗(x′1,x
′
2,x3, ...,xN)

The spin charge density γ is the diagonal part of γ1

γ(x) = γ1(x;x)

It represents the probability of finding some electron at x and is thus the expectation value

of ∑i δ(x−xi)
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Exercise [2pts]: Demonstrate the above statement

Exercise [1pts]: Show that ∫
dx1γ(x1) = N

Exercise [2pts]: Express γ1 in terms of γ2

The diagonal of the two-particle density matrix

γ2(x,y) = γ2(x,y;x,y)

represents the conditional probability of finding an electron at x if there is another electron

at y. It is thus the expectation value of ∑i ∑i6= j δ(x−xi)δ(y−x j)

The pair correlation function h is defined by the equation

γ2(x,y) = ρ(x)ρ(y) [1+h(x,y)] (33)
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Spin-less density matrices

Even though the spin variable is a discrete variable it is common practice to denote a sum

over the two realizations of this quantity by an integral

Two particle spin-less density matrix

ρ2(r1,r2;r′1,r
′
2) =

∫
ds1ds2γ2(r1s1,r2s2;r′1s1,r

′
2s2)

One particle spin-less density matrix

ρ1(r1;r′1) =
∫

ds1γ1(r1s1;r′1s1) (34)

Charge density

ρ(r1) = ρ1(r1;r1) (35)

Natural orbitals and natural occupation numbers
The natural occupation numbers ni and natural orbitals ψi are the eigenvalues and eigen-

vectors of the one-particle density matrix∫
dr′ρ1(r,r

′)ψi(r
′) = niψi(r) (36)
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The total energy in terms of density matrices

Ekin =
∫

dx1...
∫

dxN Ψ∗(x1, ...,xN)

(
N

∑
i=1

−1

2
∇2

i

)

Ψ(x1, ...,xN)

=
∫ [
−1

2
∇2

1γ1(x1;x′1)

]

x1=x′1

dx1 =
∫ [
−1

2
∇2

1ρ1(r1;r′1)

]

r1=r′1

dr′1 (37)

Ee−e =
∫

dx1...
∫

dxN Ψ∗(x1, ...,xN)

(
N

∑
i=1

i−1

∑
j=1

1

|ri− r j|

)

Ψ(x1, ...,xN)

=
1

2

∫ ∫
γ2(x1,x2;x1,x2)

|r1− r2|
dx1dx2 =

1

2

∫ ∫
ρ2(r1,r2;r1,r2)

|r1− r2|
dr1dr2 (38)

Ee−n =
∫

dx1...
∫

dxN Ψ∗(x1, ...,xN)

(
N

∑
i=1

Nat

∑
j=1

−Z j

|ri−R j|

)

Ψ(x1, ...,xN)

=
∫

γ1(x1;x1)
Nat

∑
j=1

−Z j

|r1−R j|
dx1 =

∫
ρ1(r1;r1)

Nat

∑
j=1

−Z j

|r1−R j|
dr1 (39)

Exercise [3pts]: Derive the 3 above equations
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The curse of dimensionality
What makes the many electron problem so difficult is its high dimensionality. The many

electron wave-function for an N electron system is a 3N dimensional object taking into

account only the spatial part. Discretizing the wave-function along each dimension by K

points would require to store the values of the wave-function on K3N grid point. Even for

moderate values such as K = 10,N = 100 the storage requirements would by far exceed the

memory of the largest computers. As we will see the antisymmetry constraint will slightly

reduce the storage requirements, but nevertheless the dimensionality problem remains the

main obstacle for electronic structure calculations.
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The N-representability problem
The fact that the total energy can be written in terms of the two particle density matrix,

which is only a 6-dimensional quantity, and quantities that can be derived from it (one

particle density matrix and density) suggests that one might solve the electronic structure

problem by minimizing the energy expression with respect to the two particle density

matrix. Unfortunately such a minimization gives a too low ground state energy. The

reason for this is that there is some hidden constraint, namely that the two particle density

matrix can be obtained from a N-electron wave-function. A two particle density matrix

that can be obtained from a wave-function is called N-representable. No simple sufficient

conditions for a two particle density matrix to be N-representable are known. For the

one particle density matrix on the other hand the conditions are known. A spin-less one

particle density matrix is N-representable if and only if all the eigenvalues ni are in the

interval [0:2]. If the one particle density matrix contains spin the interval is [0:1].
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The Hellmann Feynman theorem

Let us consider an Hamiltonian H that depends on a parameter λ. Typically this parameter

is the position of a nucleus or the strength of an electric field. We then have also λ
dependent eigenvalues and vectors that satisfy

H(λ)Ψ(λ,x) = E(λ)Ψ(λ,x)

This theorem is valid both for many electron and single electron wave-functions and the

variable x can therefore denote any set of coordinates of a single or many electron system.

The Hellmann Feynman theorem then states that

∂E(λ)

∂λ
=

∫
dx Ψ∗(λ,x)

∂H(λ)

∂λ
Ψ(λ,x) (40)

Proof:

∂E(λ)

∂λ
=

∂

∂λ

∫
dx Ψ∗(λ,x)H(λ)Ψ(λ,x)

=
∫

dx Ψ∗(λ,x)
∂H(λ)

∂λ
Ψ(λ,x)+

∫
dx

∂Ψ∗(λ,x)
∂λ

H(λ)Ψ(λ,x)+
∫

dx Ψ∗(λ,x)H(λ)
∂Ψ(λ,x)

∂λ

=
∫

dx Ψ∗(λ,x)
∂H(λ)

∂λ
Ψ(λ,x)+E(λ)

∫
dx Ψ∗(λ,x)

∂Ψ(λ,x)

∂λ
+E(λ)

∫
dx Ψ(λ,x)

∂Ψ∗(λ,x)
∂λ
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=
∫

dx Ψ∗(λ,x)
∂H(λ)

∂λ
Ψ(λ,x)+E(λ)

∂

∂λ

∫
dx Ψ∗(λ,x)Ψ(λ,x)

=
∫

dx Ψ∗(λ,x)
∂H(λ)

∂λ
Ψ(λ,x)

Let us now apply the Hellmann Feynman theorem to the case where λ is a component

of an atomic position R j. Without restriction we can consider the first component of the

atom number one: λ = X1 From Eqs. 40, 27, 39, 30 we obtain

f x
1 =− ∂E

∂X1
=

∂

∂X1

(∫
ρ(r1)

Nat

∑
j=1

Z j

|R j− r1|
dr1−

Nat

∑
i=1

i−1

∑
j=1

ZiZ j

|Ri−R j|

)

=

∫
ρ(r)

∂

∂X1

(
Nat

∑
j=1

Z j

|R j− r|

)

dr− ∂

∂X1

(

1

2

Nat

∑
i=1

Nat
′

∑
j=1

ZiZ j

|Ri−R j|

)

= −Z1

∫
ρ(r)

X1− x

|R1− r|3 dr+
Nat

∑
j=2

Z1Z j(X1−X j)

|R1−R j|3
(41)

The forces acting on the nuclei due to the influence of the electrons described as quantum

mechanical particles depends only on the probability distribution ρ and are identical to the

forces that would arise from a classical charge distribution ρ.

Exercise [1pts]: Write down the formula for the y component of the 2nd nucleus
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The Hellmann Feynman theorem is not only valid for the exact many electron Hamiltonian

but it is also valid in the case where approximate Hamiltonians are used such as the Hartree

Fock or Density Functional Hamiltonian.

The total energy of the electronic ground state as a function of coordinates of the atoms

in a molecule or solid E(R1, ...,RNat ) is called the potential energy surface or Born-

Oppenheimer surface. Points where the forces vanish i.e. fi = 0 are stationary points

of this surface and have a physical importance. The global minimum of the potential en-

ergy surface gives the geometry of the configurational ground state of the molecule. Other

local minima give other stable geometries. Saddle points are transition states in chemical

reactions. For our example of the H2 molecule we have one ground state geometry, for the

H2 +H system we have one transition state in addition to the two configurational ground

states.

Finding a configurational ground state with the Hellmann Feynman theorem is done in the

following way. One starts with an initial guess for the atomic positions. For these atomic

positions one solves the Schrödinger equation (Eq. 25). From the electronic charge density

ρ(r) one then obtains via the Hellmann Feynamn theorem the forces acting on the nuclei.

The nuclei are then moved in the direction of the forces to obtain new atomic positions.

The above steps are then repeated for each new atomic configuration until the forces on

the nuclei vanish. Finding the ground state geometry of a molecule or solid requires thus

solving the electronic Schrödinger equation (Eq. 25) for several non-equilibrium atomic

configurations until the equilibrium configuration is found.
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The virial theorem

Let us consider a molecule that is in its electronic and configurational ground state. As a

consequence its energy will increase if either its wave-function is modified and/or if the

atomic coordinates are modified. One such particular modification is a scaling of all the

electronic and configurational coordinates, ri → λri and Ri → λ−1Ri. Since the wave-

function has to remain normalized we have

Ψ(r1s1,r2s2, ...)→ λ3N/2Ψ(λr1s1,λr2s2, ...)

Exercise [1pts]: Prove that the wave-function remains normalized under this transforma-

tion

Hence the energy becomes

E(λ) = − λ3
∫ [

1

2
∇2

1ρ1(λr1;λr′1)

]

r1=r′1

dr1 +λ6
∫ ∫

1

2

ρ2(λr1,λr2;λr1,λr2)

|r1− r2|
dr1dr2

− λ3
∫

ρ1(λr1;λr1)
Nat

∑
j=1

Z j

|r1−λ−1R j|
dr1 +

Nat

∑
i=1

i−1

∑
j=1

ZiZ j

λ−1|Ri−R j|

Introducing a new variable t = λr we get

0-47



E(λ) = − λ2
∫ [

1

2
∇2

1ρ1(t1; t′1)

]

t1=t′1

dt1 +λ

∫ ∫
1

2

ρ2(t1, t2; t1, t2)

|t1− t2|
dt1dt2

− λ

∫
ρ1(t1; t1)

Nat

∑
j=1

Z j

|t1−R j|
dt1 +λ

Nat

∑
i=1

i−1

∑
j=1

ZiZ j

|Ri−R j|

= λ2Ekin +λEpot

The stationary point condition gives

0 =
∂E

∂λ

∣
∣
∣
∣
λ=1

= 2Ekin +Epot

Together with the fact that E = Ekin +Epot one thus obtains the virial theorem

E =−Ekin =
1

2
Epot (42)
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Slater determinant wave-functions

Writing the many electron wave function Ψ as a sum of Slater determinants ΨI is the

easiest way to impose antisymmetry. Such an ansatz is called configuration interaction

ansatz, since a determinant can be considered as an electronic configuration.

Ψ(x1, ...,xN) = ∑
I

CI

1√
N!

∣
∣
∣
∣
∣
∣

ψi1(x1) ... ψiN (x1)
... ... ...

ψi1(xN) ... ψiN (xN)

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

ΨI(x1,...,xi,...,x j ,...,xN )

(43)

ψi(x) are orthonormal single particle spin orbitals, i.e.
∫

ψi(x)ψ j(x)dx = δi, j and I is a

composite index I = (i1, ...iN). The most general form of a spin orbital is

ψ j(x) = ψα
j (r)α(s)+ψ

β
j (r)β(s)

where α(s) and β(s) are the two realizations of the spin function σ(s) representing a spin

up and spin down electron.
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A Slater determinant wave-function is obviously antisymmetric

ΨI(x1, ...,xi, ...,x j, ...,xN) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ψi1(x1) ... ψiN (x1)
... ... ...

ψi1(xi) ... ψiN (xi)
... ... ...

ψi1(x j) ... ψiN (x j)
... ... ...

ψi1(xN) ... ψiN (xN)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= −

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ψi1(x1) ... ψiN (x1)
... ... ...

ψi1(x j) ... ψiN (x j)
... ... ...

ψi1(xi) ... ψiN (xi)
... ... ...

ψi1(xN) ... ψiN (xN)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=−ΨI(x1, ...,x j, ...,xi, ...,xN)
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Using a basis set of M orbitals ψi, there are M(M−1)(M−2)...(M−(N−1)) possibilities

to arrange the indices i1, ..., iN . Since the determinant does not depend on the ordering

(except for the sign), we can constrain the sum ∑I = ∑i1,...,iN to ∑′I = ∑i1<i2<...<iN
and we

get M!
(M−N)!N!

possible configurations. The curse of dimensionality has not disappeared!

The ΨI’s form an orthonormal basis set for i1 < i2 < ... < iN . For simplicity we consider

only real (not complex) wave-functions

∫
dx1, ...dxN ΨI(x1, ...xN)ΨJ(x1, ...xN) =

1

N!

∫
dx1, ...dxN

(

ψi1(x1)ψi2(x2)ψi3(x3)...ψiN (xN) − ψi2(x1)ψi1(x2)ψi3(x3)...ψiN (xN)+ ....
)

(

ψ j1(x1)ψ j2(x2)ψ j3(x3)...ψ jN (xN) − ψ j2(x1)ψ j1(x2)ψ j3(x3)...ψ jN (xN)+ ....
)

= δI,J
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Calculation of the Configuration Interaction Hamiltonian

The Schrödinger equation

H Ψ = E Ψ

together with the ansatz

Ψ = ∑
J

CJΨJ (44)

gives

H ∑
J

CJΨJ = E ∑
J

CJΨJ

Multiplying from the left by ΨI and integrating we obtain

∑
J

HCI
I,J CJ = E CI (45)

where

HCI
I,J =

∫
dx1, ...dxNΨ∗I (x1, ...xN)H ΨJ(x1, ...xN)

HCI
I,J is given by the Slater Condon rules:
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• if I = J

HCI
I,J = ∑

i=i1,...,iN

[i|h|i]+ 1

2
∑

i=i1,...,iN

∑
j=i1,...,iN

[i, i| j, j]− [i, j| j, i] (46)

• if I and J differ by one index ik 6= jk

HCI
I,J = [ik|h| jk]+ ∑

j=i1,...,iN

[ik, jk| j, j]− [ik, j| j, jk] (47)

• if I and J differ by two indices ik 6= jk, il 6= jl

HCI
I,J = [ik, jk|il , jl ]− [ik, jl |il , jk] (48)

• else

HCI
I,J = 0 (49)

where

[i|h| j] =
∫

dx ψ∗i (x)

(

−1

2
∇2 +

Nat

∑
l=1

−Zl

|r−Rl |
)

)

ψ j(x)

[i, j|k, l] =
∫ ∫

dx dx′
ψ∗i (x)ψ j(x)ψ∗k(x

′)ψl(x
′)

|r− r′| (50)

0-53



Configuration interaction calculations
There are two conceptually important versions of Configuration Interaction (CI) calcula-

tions

• In the full CI method one uses M given spin-orbitals and finds the set of expansion

coefficients CJ of Eq. 44 that minimize the energy. This minimization problem

gives rise to the eigenvalue problem of Eq. 45. The dimension of the eigenvalue is

typically several billions.

• In the multi-reference self-consistent field method (MRSCF) one finds not only the

optimal coefficients CJ but also the optimal set of orbitals ψi(x). In addition to

the eigenvalue problem one also has a set of differential equations for the spin-

orbitals. The MRSCF is in principle the most accurate method for solving the many

electron Schrödinger equation. To obtain the same accuracy with a full CI methods

one has to use a much larger set of fixed orbitals ψi(x). A widely used method

is the ordinary self-consistent field method (SCF) method where one has only one

determinant. It can thus be considered as a special case of the MRSCF method,

even though it is not really a configuration interaction method since there is only

one configuration. The SCF method will be discussed in detail later.
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Spin properties of many electron wave-functions
The non-relativistic many electron Hamiltonian 27 does not depend on any spin variable.

Hence the Hamiltonian commutes with the total spin operators

Sz =
N

∑
i=1

sz(i)

and

S2 = S2
x +S2

y +S2
z

where Sx and Sy are defined analogously to Sz. As a consequence any eigenstate and in

particular the ground state Ψ0 of H has to be an eigenfunction of Sz and S2.

Reminder of single particle spin properties
Any spin function or spinor σ(s) is a linear combination of the two spinors α(s) and β(s)
which represent a spin up and spin down electron. We have

α(+1/2) = 1 α(−1/2) = 0 (51)

β(+1/2) = 0 β(−1/2) = 1

and we can therefore represent α and β as 2 component vectors

α =

(
1

0

)
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β =

(
0

1

)

The Pauli spin operators are consequently 2 by 2 matrices

sx =
1

2

(
0 1

1 0

)

sy =
1

2

(
0 −I

I 0

)

sz =
1

2

(
1 0

0 −1

)

And their action on α and β is

sxα =
1

2
β sxβ =

1

2
α

syα = I
1

2
β syβ =−I

1

2
α

szα =
1

2
α szβ =−1

2
β
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In the future we will frequently encounter the ’integral’

∫
σi(s)σ j(s)ds

As mentioned before the integral is a short hand notation for a sum:

σi(−1/2)σ j(−1/2)+σi(1/2)σ j(1/2)

We can now consider the following 4 cases. The result always follows from Eq. 51

• σi = α and σ j = β. Then α(−1/2)β(−1/2)+α(1/2)β(1/2) = 0

• σi = β and σ j = α. Then β(−1/2)α(−1/2)+β(1/2)α(1/2) = 0

• σi = α and σ j = α. Then α(−1/2)α(−1/2)+α(1/2)α(1/2) = 1

• σi = β and σ j = β. Then β(−1/2)β(−1/2)+β(1/2)β(1/2) = 1

Hence the σ’s behave like a set of orthogonal functions:

∫
σi(s)σ j(s)ds = δi, j
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Theorem: A Slater determinant wave-function is an eigenfunction of Sz if all of its spin

orbitals are of the form ψ(r)α(s) or ψ(r)β(s). So we will now assume that σ is either

equal to α(s) or β(s). Consequently sz σ = λ σ, where λ is either 1
2

or − 1
2
.

Proof:

(
N

∑
i=1

sz(i)

)

ΨI(x1, ...,xN) =
1√
N!

(
N

∑
i=1

sz(i)

)
[

ψi1(r1)σi1(s1) ψi2(r2)σi2(s2) ψi3(r3)σi3(s3)...ψiN (rN)σiN (sN)

−ψi2(r1)σi2(s1) ψi1(r2)σi1(s2) ψi3(r3)σi3(s3)...ψiN (rN)σiN (sN)+ ....
]

=
1√
N!

[

(λi1 + ...+λiN )
(

ψi1(r1)σi1(s1) ψi2(r2)σi2(s2) ψi3(r3)σi3(s3)...ψiN (rN)σiN (sN)
)

−(λi1 + ...+λiN )
(

ψi2(r1)σi2(s1) ψi1(r2)σi1(s2) ψi3(r3)σi3(s3)...ψiN (rN)σiN (sN)
)

+ ....
]

= (λi1 + ...+λiN )ΨI(x1, ...,xN)

A single determinant wave-function of this type is in general not an eigenfunction of the

S2 operator. There is however one important exception, closed shell systems
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Closed shell systems
A closed shell systems consists of an even number N of electrons. The electrons form pairs

that share the same spatial orbital, but differ in their spin function being either α or β. A

closed system is represented by a single or a linear combination of Slater determinants of

the following form:

ΨI(x1, ...,xN) =

1√
N!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ψi1(r1)α(s1) ψi1(r1)β(s1) ... ψiN/2
(r1)α(s1) ψiN/2

(r1)β(s1)

... ... ... ... ...
ψi1(ri)α(si) ψi1(ri)β(si) ... ψiN/2

(ri)α(si) ψiN/2
(ri)β(si)

... ... ... ... ...
ψi1(rN)α(sN) ψi1(rN)β(sN) ... ψiN/2

(rN)α(sN) ψiN/2
(rN)β(sN)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Such a Slater determinant is an eigenfunction of both Sz and S2 with eigenvalues 0. (see

exercise below). By definition it is thus a singlet state. Closed shell systems represent

a very important class of systems in chemistry and physics. Most systems formed by

covalent bonds are closed shell systems.
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Exercise [3pts]: Using the previous theorem show that a closed shell determinant is

an eigenfunction of Sz with eigenvalue 0. Next show that it is also a eigenfunction of

S2 = ∑i, j sx(i)sx( j) + sy(i)sy( j) + sz(i)sz( j) with eigenvalue 0. Hint: Show first that a

closed shell determinant is an eigenfunction of ∑i, j sz(i)sz( j) with eigenvalue zero. Next

examine ∑i, j sx(i)sx( j) and ∑i, j sy(i)sy( j). Consider the cases where i = j, i = 2k−1 and

j = 2k (k = 1, ...,N/2) and the remaining cases.
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The Hartree Fock energy expression
The Hartree Fock (HF) method is a standard method for medium accuracy electronic

structure calculations. In the chemistry community the method is also frequently called

self-consistent field (SCF) method. In this method the wave-function is given by a sin-

gle determinant. This approximation is better than one might think. It turns out that

in a MRSCF calculation expansion (Eq. 44) only one coefficient CJ of the expansion of

Eq. 44 is significant, the majority of the coefficients are in general very small. In the HF

method one has to solve a system of differential equations for the orbitals. This system of

equations is obtained by minimizing the expectation value of the total energy for a single

determinant wave-function. According to Eq. 46 the energy is given by

E =
N

∑
i=1

[i|h|i]+ 1

2

N

∑
i=1

N

∑
j=1

([i, i| j, j]− [i, j| j, i]) (52)

• The first term is the ordinary one particle (kinetic plus potential) energy

• The second term is the classical electrostatic repulsion

• The last term is the non-classical exchange term. This term ensures that the func-

tional is self-interaction free. Because the term [i, i|i, i] from the exchange part can-

cels the same term from the classical Hartree part, an electron in an orbital i does

not repel itself.
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The Hartree Fock equations will be derived in the following for the important case of a

closed shell system. Since we require the spatial part of the orbitals to be identical for

pairs of spin up and spin down electrons this variety of Hartree Fock is called restricted

Hartree Fock. Since the spin part of our spin orbitals is either α or β we can integrate out

the spin part:

[i|h|i] =
∫

drds ψ∗i (r)σi(s)

(

−1

2
∇2 +Ven(r)

)

ψi(r)σi(s)

=
∫

dr ψ∗i (r)

(

−1

2
∇2 +Ven(r)

)

ψi(r)

where

Ven(r) =
Nat

∑
j=1

−Z j

|r−R j|

[i, i, j, j] =
∫ ∫

drds dr′ds′
ψ∗i (r)σi(s)ψi(r)σi(s)ψ∗j(r

′)σ j(s
′)ψ j(r

′)σ j(s
′)

|r− r′|

=

∫ ∫
dr dr′

ψ∗i (r)ψi(r)ψ∗j(r
′)ψ j(r

′)

|r− r′|
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[i, j, i, j] =
∫ ∫

drds dr′ds′
ψ∗i (r)σi(s)ψ j(r)σ j(s)ψ∗i (r

′)σi(s
′)ψ j(r

′)σ j(s
′)

|r− r′|

=
∫ ∫

dr dr′
ψ∗i (r)ψ j(r)ψ∗i (r

′)ψ j(r
′)

|r− r′| δσi,σ j

Introducing spin free one electron integrals and electron repulsion integrals

(i|h| j) =
∫

dr ψ∗i (r)

(

−1

2
∇2 +Ven(r))

)

ψ j(r)

(i, j|k, l) =
∫ ∫

dr dr′
ψ∗i (r)ψ j(r)ψ∗k(r

′)ψl(r
′)

|r− r′|
the Hartree Fock energy (eq. 52) thus becomes for a closed shell system

E =
N/2

∑
i=1

2(i|h|i)+ 1

2

N/2

∑
i=1

N/2

∑
j=1

4(i, i| j, j)−2(i, j| j, i) (53)
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Exercise [2pts]: Show that the one-particle density matrix for a general single determinant

wave-function is given by

γ1(x1;x′1) =
N

∑
j=1

ψ j(x)ψ
∗
j(x
′) (54)

and that the spin-less one-particle density matrix becomes

ρ1(r1;r′1) = 2

N/2

∑
j=1

ψ j(r)ψ
∗
j(r
′) (55)

for a closed shell single determinant wave-function

Exercise [2pts]: Verify that ∑i ∑ j[i, i| j, j] represents indeed the classical electrostatic in-

teraction, i.e. show that

N

∑
i=1

N

∑
j=1

[i, i| j, j] =
∫

drdr′
ρ(r)ρ(r′)
|r− r′|

hint: use Eq. 34, 35

Exercise [2pts]: Show that the HF energy of Eq. 53 and one-particle density matrix of

Eq. 55 is invariant under unitary transformations among the single particle orbitals

ψ̃i(r) = ∑
j

Ui, jψ j(r) (56)
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The HF energy in terms of density matrices
The total HF energy can entirely be written in terms of the one particle density matrix. The

relevant part of the energy is obviously the electrostatic interaction among the electrons

that is in general a function of the two particle density matrix (Eq. 38). From Eq. 52 and

the definition of γ1 (Eq. 54) it follows that the HF electron-electron repulsion energy can

be written as

Ee−e =
1

2

(∫
dx

∫
dx′

γ1(x;x)γ1(x
′;x′)

|r− r′| −
∫

dx

∫
dx′

γ1(x;x′)γ1(x
′;x)

|r− r′|

)

(57)

This shows that the HF method neglects certain correlations among the electrons because

the entire correlations are only visible in the two particle density matrix.

It can be demonstrated that in an insulator γ1(x;x′) decays exponentially fast to zero for

large separations of r and r′. This implies that all the quantum mechanical effects which

are represented by the second term in Eq. 57, are short range in the HF approximation. The

only long range term is the electrostatic interaction, i.e the first term in Eq. 57. This is not

correct. Even if the above electrostatic term from the the electronic charge distribution is

exactly canceled by ionic contributions (which is for instance the case in a noble gas dimer

with a large interatomic distance), there is a long range quantum mechanical effect which

is the van-der Waals interaction. Hence van-der Waals interactions are not described by

HF.

0-65



Orthogonalizing orbitals
A set of orbitals ψi is said to be orthonormal (= orthogonal and normalized) if the overlap

matrix S ,

Si, j =
∫

dr ψ∗i (r)ψ j(r)

is the identity matrix. There are three major algorithms to generate an orthonormal set ψ̃i

from a non-orthonormal set.

• Loewdin orthogonalization

ψ̃i = ∑
j

(

S−1/2
)∗

i, j
ψ j

• Gram Schmid orthogonalization

For i=1 to N do

ψ̄i(r) = ψi(r)−
i−1

∑
j=1

∫
ψ∗j(r

′)ψi(r
′)dr′ψ j(r)

ψ̃i(r) = ψ̄i(r)/

√∫
dr ψ̄∗i (r)ψ̄i(r)

enddo
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The Gram Schmid procedure is usually done in place

ψ1 ⇐ ψ1/|ψ1|
ψ2 ⇐ ψ2−〈ψ1|ψ2〉ψ1 ; ψ2⇐ ψ2/|ψ2|
ψ3 ⇐ ψ3−〈ψ1|ψ3〉ψ1−〈ψ2|ψ3〉ψ2 ; ψ3⇐ ψ3/|ψ3|
... ⇐ ...

Exercise [2pts]: Show that both methods give orthonormal orbitals

Exercise [1pts]: How does one have to modify the formulas for Loewdin and Gram-

Schmid orthogonalization if one deals with discrete vectors instead of continuous

functions?

In the Gram Schmid method the first vector is not turned (only scaled) whereas the

last one is heavily turned. In the Loewdin method all vectors are roughly equally

turned.

LOEWDIN GRAM −SCHMID 
1 2 1 2

1
2

2

1
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• Stabilized Gram Schmidt: It turns out that the classical Gram Schmidt procedure

becomes nummerically unstable in high dimensional spaces. In the stabilized Gram

Schmidt the orthogonalization steps are done in a different order which is mathe-

matically equivalent but numericallty more stable.

ψ1 ⇐ ψ1/|ψ1|
ψ2 ⇐ ψ2−〈ψ1|ψ2〉ψ1

ψ3 ⇐ ψ3−〈ψ1|ψ3〉ψ1

ψ4 ⇐ ψ4−〈ψ1|ψ4〉ψ1

...

ψ2 ⇐ ψ2/|ψ2|
ψ3 ⇐ ψ3−〈ψ2|ψ3〉ψ2

ψ4 ⇐ ψ4−〈ψ2|ψ4〉ψ2

ψ5 ⇐ ψ5−〈ψ2|ψ5〉ψ2

...

ψ3 ⇐ ψ3/|ψ3|
... ...
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• Orthogonalization with importance ranking This method will be demonstrated for

discrete vectors rather than for continous functions. However it can easily be adapted

to continuous functions if necessary. The central quantity is again the overlap ma-

trix S whose elements are in the discrete case the scalarproducts of the initial non-

orthogonal vectors vi

Si, j = 〈vi|v j〉= ∑
k

vi(k)v j(k)

where the elements of the vector vi are denoted by vi(k). Since the overlap matrix is

a positive definite symmetric matrix its eigenvalues λi are real and its eigenvectors

ωi diagonalize the original overlap matrix, i.e.

∑
l,k

ωi(l)Sl,kω j(k) = δi, jλi

The new orthogonal set of vectors wi can now be obtained by the following linear

combination of the original vi’s

wi = ∑
k

ωi(k)vk

The orthogonality can easily be seen from the relation

〈wi|w j〉=∑
µ

wi(µ)w j(µ) =∑
k,l

∑
µ

ωi(k)vk(µ)ω j(l)vl(µ) =∑
k,l

ωi(k)Sk,lω j(l) = δi, jλi

0-69



The length
√

λi of the vectors wi is a measure of how many of the original vectors

vi point in directions similar to wi and how long they are. This can easily be de-

duced for the first eigenvalue vector pair from the variational principle. w1 is the

longest vector that can be constructed as a linear combination of the vi by a set of

coefficients ω1(l) that are normalized to one, since the eigenvector ω1 maximizes

the expression
〈w|w〉
〈ω1|ω1〉

=
〈ω1|S|ω1〉
〈ω1|ω1〉

Obviously a long vector can be constructed if many of the original vi’s point in

the same direction and if they are long. Eigenvalues that are zero, or very small

in numerical applications, indicate that the dimension of the space spanned is less

than the number of original vectors vi. The eigenvectors correponding to these small

eigenvalues indicate the degrees of freedom arising from numerical noise. In this

way large eigenvalues λi assign a larger importance to a direction wi, whereas small

eigenvalues indicate that the corresponding directions wi are not significant or even

purely numerical noise. The situation is illustrated below.

There are three input vectors shown in black. Two of them are very similar to

each other and they probably differ only by some noise. We assume that they are

not lying exactly in the plane. Two output vectors are shown in red. The longest

vector shows the most important direction, and the second longest the second most
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important direction. Not shown is the third vector which is very short and nearly

perpendicular to the plane. This vector just represents unimportant noise.
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The Euler-Lagrange equations of a functional
A functional is a mathematical object that takes as input a function and gives as output

a number such as the total energy E. Frequently in physics we seek a function that will

make the functional stationary. Such a function has the property that to first order the

output of the functional will not change under any conceivable infinitesimal change of the

input function. The calculus of variations allows us to calculate the functional derivative

of such an object, which then in turn can be set equal to zero. The resulting differential

equation is called the Euler Lagrange equation of the functional. Since the derivative is

not with respect to a variable but with respect to a function it is denoted by
δF[ f ]
δ f (x) and it is

a function of x. For the moment we will assume that f is real. Later the generalization

to complex functions f will be considered. Formally the Euler Lagrange equation of a

functional F[ f (x)] can be obtained by putting the following ordinary partial derivative to

zero.
∂

∂a
F [ f (x)+aδ f (x)]|a=0 = 0

Example: Let’s calculate the functional derivative of

E[ψ] =

∫
dx ψ(x)(− 1

2
∂2

∂x2 )ψ(x)+ψ(x)V (x)ψ(x)∫
dxψ(x)ψ(x)

=
P[ψ]

Q[ψ]
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∂

∂a

P[ψ]

Q[ψ]
=

∂P[ψ]
∂a

Q[ψ]
−

∂Q[ψ]
∂a

Q[ψ]2
P[ψ]

∂Q[ψ]

∂a

∣
∣
∣
∣
a=0

=
∂

∂a

∫
dx (ψ+aδ f )(ψ+aδ f )

∣
∣
∣
∣
a=0

= 2

∫
dx (ψ+aδ f )δ f

∣
∣
∣
∣
a=0

=
∫

dx [2ψ]δ f

∂P[ψ]

∂a

∣
∣
∣
∣
a=0

=
∂

∂a

∫
dx (ψ+aδ f )(−1

2

∂2

∂x2
)(ψ+aδ f )+(ψ+aδ f )V(x)(ψ+aδ f )

∣
∣
∣
∣
a=0

=
∫

dx ψ(−1

2

∂2

∂x2
)δ f +δ f (−1

2

∂2

∂x2
)ψ+2ψV δ f

=

∫
dx

[

(− ∂2

∂x2
)ψ(x)+2V (x)ψ(x)

]

δ f (x)

The terms in the square brackets are the functional derivatives of P and Q.

Putting Q[ψ] = 1 we finally obtain

∂

∂a

P[ψ]

Q[ψ]

∣
∣
∣
∣
a=0

= 2

∫
dx δ f (x)

(

−1

2

∂2

∂x2
+V (x)−E

)

ψ(x) = 0
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If this holds true for any δ f it follows that
(

−1

2

∂2

∂x2
+V (x)−E

)

ψ(x) = 0 (58)

which is just the 1-dim single particle Schrödinger equation.

Frequently the energy expression is written in terms of complex orbitals. The Euler-

Lagrange equations of a real functional F that depends on the complex function

f (x) = fr(x)+ I fi(x) are

δF [ f ]

δ fr(x)
= 0 (59)

δF [ f ]

δ fi(x)
= 0 (60)

The same set of equations can be obtained in a more elegant way by taking the derivative

with respect to f ∗. Using the chain rule and the fact that fr = ( f + f ∗)/2 and fi = ( f −
f ∗)/(2I) we obtain

δF [ f ]

δ f ∗(x)
=

δF [ f ]

δ fr(x)

δ fr(x)

δ f ∗(x)
+

δF [ f ]

δ fi(x)

δ fi(x)

δ f ∗(x)

=
δF [ f ]

δ fr(x)

1

2
+

δF[ f ]

δ fi(x)
I
1

2
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Since both the real and the imaginary part have to be zero, the condition
δF [ f ]
δ f ∗(x) = 0 is

equivalent to the set of Equations 59 and 60.

Exercise [2pts]: Show that the Euler Lagrange equation of

E[ψ] =

∫
dx ψ∗(x)(− 1

2
∂2

∂x2 )ψ(x)+ψ∗(x)V (x)ψ(x)∫
dxψ∗(x)ψ(x)

gives as well the Schrödinger equation 58.

In the complex formalism one obtains immediately the correct functional derivative of

the kinetic energy term, without doing two integrations by parts. That an integration by

parts can be done is explicitly assumed. If it could not be done the operator would not be

hermitian and could therefore be complex.

If no differential operators are present the following shortcut will give the correct result.

Replace all integrals by sums over grid points ri, take the partial derivative with respect

to the quantities f (ri) and divide by the integration weight. Finally drop the subscript i to

obtain a continuous function from the discrete partial derivatives.
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As an example let’s recalculate the functional derivative of the normalization integral us-

ing this trick.
δ

δψ∗(x)

∫
ψ∗(x)ψ(x)dx

the discrete version becomes

(

∂

∂ψ∗(xi)
∑

j

ψ∗(x j)ψ(x j)∆x

)

/∆x = ψ(xi)

Hence the functional derivative is ψ(x)

In the previous example we were looking for the lowest eigenstate of the single particle

Schrödinger equation. Including the orthonormality constraint was easy in this case. Since

there is only one orbital we had just to make sure that it is normalized. This was done by

explicitly dividing in the energy expression by the norm Q[ψ]. In case where we have an

energy expression that depends on several orbitals imposing orthonormality is done in the

following way.

0-76



Minimizing a functional under orthonormality constraints
Orthonormality of the orbitals that are used to construct Slater determinant wave-functions

leads to significant simplifications in the calculation of expectation values. If one is ready

to accept more complicated expressions one can however also use non-orthonormal or-

bitals. In order to calculate the gradient under orthonormality constraints we have to

abandon temporarily the orthonormality assumption. Only after we have calculated the

gradient expression we can again simplify it by restricting ourselves to orthonormal or-

bitals.

In order to calculate the energy expectation value from a set of real non-orthonormal

orbitals we consider some composite functional. The first part of the functional constructs

a set of orthonormal orbitals ψ̃i by a symmetric Löwdin orthogonalization of the non-

orthogonal set ψi

ψ̃i = ∑
l

(

S
−1/2

i,l

)∗
ψl ; ψ̃∗i = ∑

l

S
−1/2

i,l ψ∗l (61)

where Si, j =
∫

ψi(r)ψ j(r)dr is the overlap matrix among the occupied orbitals. Since in

our actual calculation we use orthogonal orbitals, we have to consider only infinitesimally

nonorthogonal orbitals . Then S−1/2 = (I +(S − I))−1/2 ≈ I− (1/2)(S − I) and Eq. 61
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becomes

ψ̃∗j = ∑
l

(
3

2
δ j,l−

1

2
S j,l)ψ

∗
l ; ψ̃ j = ∑

l

(
3

2
δ j,l−

1

2
S∗j,l)ψl (62)

The gradient of the total functional is then obtained by applying the chain rule:

δE

δψ∗i (r)
= ∑

j

∫
δE

δψ̃∗j(r
′)

δψ̃∗j(r
′)

δψ∗i (r)
dr′+∑

j

∫
δE

δψ̃ j(r′)
δψ̃ j(r

′)
δψ∗i (r)

dr′ (63)

The first two parts of the two products in Eq. 63 depend on the specific energy functional

and we will just denote this unconstrained gradient by d j(r)

d j(r) =
1

2

δE

δψ̃∗j(r)
; d∗j (r) =

1

2

δE

δψ̃ j(r)
(64)

The second parts in the two products on the right hand side of Eq. 63 give

δψ̃ j(r
′)

δψ∗i (r)
= −1

2
∑

l

ψl(r
′)

δ

δψ∗i (r)

∫
ψ j(r

′′)ψ∗l (r
′′)dr′′

= −1

2
ψi(r

′)ψ j(r) (65)
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δψ̃∗j(r
′)

δψ∗i (r)
=

3

2
δ j,iδ(r− r′)− 1

2
S j,iδ(r− r′)− 1

2
∑

l

ψ∗l (r
′)

δ

δψ∗i (r)

∫
ψ∗j(r

′′)ψl(r
′′)dr′′

=
3

2
δi, jδ(r− r′)− 1

2
Si, jδ(r− r′)− 1

2
∑

l

ψ∗l (r
′)δi, jψl(r)

= δi, jδ(r− r′)− 1

2
δi, j ∑

l

ψ∗l (r
′)ψl(r) . (66)

In the last transformation step, we have used the fact that we calculate the derivative for

a set of orthonormal orbitals and therefore S = I. Because of the orthogonality constraint

we are of course allowed to put S = I only after calculating the derivative. Finally, we

obtain the expression for the constrained gradient

1

2

δE

δψ∗i (r)
= di(r) − 1

2
∑

j

(∫
d∗j (r

′)ψi(r
′)dr′

)

ψ j(r)

− 1

2
∑

j

(∫
di(r

′)ψ∗j(r
′)dr′

)

ψ j(r)

= di(r)−∑
j

Λi, jψ j(r). (67)

where Λ is a Lagrange multiplier matrix for the orthogonality constraints
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The Hartree Fock equations

The Euler-Lagrange equation for the HF energy expression (Eq. 52) is

di(x) =

(

−1

2
∇2 +Ven(r)+VH(r)

)

ψi(x)−∑
j

∫
dx′

ψi(x
′)ψ∗j(x

′)

|r− r′| ψ j(x) (68)

The Euler-Lagrange equation of the closed shell system HF energy expression (Eq. 53) is

1

2
di(r) =

(

−1

2
∇2 +Ven(r)+VH(r)

)

ψi(r)−∑
j

∫
dr′

ψi(r
′)ψ∗j(r

′)

|r− r′| ψ j(r) (69)

The Hartree potential VH(r) is the classical electrostatic potential arising from the elec-

tronic charge density ρ(r)

VH(r) =
∫

dr′
ρ(r′)
|r− r′| (70)

For a closed shell system the charge density (Eq. 35, 55) is given by

ρ(r) = 2

N/2

∑
j=1

ψ j(r)ψ
∗
j(r)
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The simplest way to solve the HF equations numerically consists thus of a repetition until

convergence of the following steps

• Use Eq. 69 (or Eq. 68) to calculate the unconstrained gradient

• Use Eq. 67 to form the effective gradient δE
δψi(r)

that contains the orthogonality con-

straint

• Move downhill along the gradient. Make only small moves with step-size step to

ensure convergence

ψi(r)← ψi(r)− step
δE

δψi(r)

• Orthogonalize ψi(r)

Since the gradient incorporates already the orthogonality constraints, one might wonder

why an explicit orthogonalization step is still necessary. Things are illustrated in the figure

below.
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Let us assume that we search the minimum of the function whose equipotential lines are

shown in black under the constraint that we remain on the red curve. The unconstrained

gradient is represented by the black vector, the gradient incorporating the constraints by

the red vector. Moving along the red gradient will conserve the constraint only to first

order but not to higher order. For this reason the constraint has to be imposed explicitly

after any finite move in the direction of the red gradient.
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It can be shown that
∫

d∗j (x
′)ψi(x

′)dx′ =
∫

di(x
′)ψ∗j(x

′)dx′

Exercise [2pts]: Show that for the closed shell HF case (di is given by Eq. 69)

∫
d∗j (r

′)ψi(r
′)dr′ =

∫
di(r

′)ψ∗j(r
′)dr′

Hence Eq. 67 has for the HF case the structure

1

2

δE

δψi(x)
= di(x)−∑

j

Λi, jψ j(x) (71)

where Λi, j is the symmetric matrix
∫

d∗j (x
′)ψi(x

′)dx′. We can always choose as the unitary

matrix U of Eq. 56 the matrix that diagonalizes Λ. The HF equations have then the

structure

di(x) = εiψi(x) (72)

where εi are the eigenvalues of Λ. The particular orbitals that satisfy Eq. 72 are called

canonical orbitals. The matrix Λi, j is the discretization of the Fock operator discussed in

the following and is called the Fock matrix.
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The canonical orbitals can be obtained in two ways. Once one has solved the HF equations

as a minimization problem the canonical orbitals can be obtained from the non-unique

minimizing orbitals by a unitary transformation. The other possibility is to consider the

solution of the HF equations as a self-consistent eigenvalue problem. In this alternative

approach one finds the eigenvectors of the Fock matrix (Eq. 74). For a given Fock matrix

this is an obviously an ordinary eigenvalue problem. The problem is that the Fock matrix

is not fixed, but it depends on the orbitals which are the solution of the eigenvalue problem.

For this reason Eq. 74 gives rise to a so-called self-consistent eigenvalue problem. The

self-consistency condition is fulfilled if the orbitals that were used for the construction of

the Fock matrix are identical to the eigenorbitals.

In density functional theory the situation is similar. The equations can either be solved

as a minimization problem or as a self-consistent eigenvalue problem. The algorithmic

aspects of the mixing approach will be discussed in more detail in the section on density

functional theory.
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The Fock operator and Koopman’s theorem

The Fock operator F is given by

F (x,x′) = δ(x−x′)

(

−1

2
∇2

r′ +Ven(r)+VH(r))

)

−
N

∑
j=1

ψ∗j(x
′)

|r− r′|ψ j(x) (73)

The gradient of Eq. 68 can thus be obtained by applying the Fock operator onto the orbitals

di(x) =
∫

F (x,x′)ψi(x
′)dx′

The canonical orbitals are thus the eigenorbitals of the Fock operator since they satisfy

∫
F (x,x′)ψi(x

′)dx′ = εiψi(x) (74)

In principle the Hartree Fock method allows to determine only the occupied orbitals that

are used for the construction of the determinantal wave-function. If one considers however

the Hartree Fock orbitals as the eigenfunctions of the Fock operator one can calculate both

occupied and virtual orbitals. The Fock operator has an infinite number of eigenfunctions.

The lowest N orbitals are called the occupied orbitals. All the other orbitals are called
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virtual orbitals. Since the virtual orbitals do not enter into the HF wave-function, they do

not influence the energy or any other physical property of the Hartree Fock ground state.

For a system of noninteracting electrons the energy is the sum over all occupied eigen-

values. In the Hartree Fock method we have what is called independent particles that are

interacting through some mean field. The energy E can therefore be written as the sum

over the eigenvalues of Eq. 74 plus a correction term that arises from averaging out the

interactions as can be seen by comparing Eq. 52 and Eq. 68.

E =
N

∑
i=1

εi−
1

2

N

∑
i=1

N

∑
j=1

([ii| j j]− [i j| ji]) (75)

The eigenvalues of the Fock operator εi are the expectation values of this operator with

respect to its eigenfunctions and hence they are given by

εi = [i|h|i]+
N

∑
j=1

([ii| j j]− [i j| ji]) (76)

The physical importance of the Fock operator and its eigenvalues comes from the fact

that the eigenvalues are approximations to the ionization energy and electron affinity. The

Hartree Fock ionization energy is defined as the difference between the energy EN of

the N-electron determinant and the energy EN−1 of the N − 1-electron determinant. It
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can thus in principle be determined by doing 2 separate HF calculations for the N and

N−1 electron system. If one does 2 such separate calculations one has of course to relax

separately the 2 sets of (canonical) orbitals for both systems, since both sets are different.

It turns out that relaxations effects are usually not very important and one can therefore

obtain a decent N − 1-electron HF wave-function by building up the determinant using

N−1 canonical orbitals of the N electron determinant. Let us assume that we take out in

the construction of the N−1 electron determinant the canonical orbital m. The ionization

potential is then given by (Eq. 75)

EN−1−EN ≈ ∑
i6=m

[i|h|i]+ 1

2
∑
i6=m

∑
j 6=m

[i, i| j, j]− [i, j| j, i]

−
(

N

∑
i=1

[i|h|i]+ 1

2

N

∑
i=1

N

∑
j=1

[i, i| j, j]− [i, j| j, i]
)

= −
(

[m|h|m]+
N

∑
j=1

[m,m| j, j]− [m, j| j,m]

)

= −εm

In the same way it can be shown that the HF electron affinity EN−EN+1 is approximated

by−εl , where −εl is the l-th (virtual) eigenvalue of the Fock operator calculated from the

Fock operator of the N electron system. These results are called Koopman’s theorem.
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The helium atom in HF

The Hamiltonian for the He atom is

H =−1

2
∇2

1−
1

2
∇2

2 +
1

|r1− r2|
− 2

|r1|
− 2

|r2|
(77)

The HF ground state is obtained by putting a spin up and a spin down electron into the

same 1s-like orbital ψ1s. Antisymmetry is achieved through the spin part of the wave-

function:

Ψ(r1,s1,r2,s2) = ψ1s(r1)ψ1s(r2)
1√
2
(α(s1)β(s2)−α(s2)β(s1)) (78)

Exercise [1pts]: Show that Ψ(r1,s1,r2,s2) of Eq. 78 can be written as a closed shell

determinant

The corresponding one-particle density matrix is

ρ1(x1,x
′
1) = ψ1s(r1)ψ1s(r

′
1)
(
α(s1)α(s

′
1)+β(s1)β(s

′
1)
)

ρ1(r1,r
′
1) = 2ψ1s(r1)ψ1s(r

′
1)

ρ1(r1) = 2ψ1s(r1)ψ1s(r1) = 2ψ1s(r1)ψ1s(r1) (79)

The corresponding two-particle density matrix is
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ρ2(r1,r2;r′1,r
′
2) = 2ψ1s(r1)ψ1s(r

′
1)ψ1s(r2)ψ1s(r

′
2)

ρ2(r1,r2) = 2ψ1s(r1)ψ1s(r1)ψ1s(r2)ψ1s(r2) =
1

2
ρ1(r1)ρ1(r2) =

1

2
ρ1(r1)ρ1(r2) (80)

Exercise [2pts]: Derive Eq. 79 and Eq. 80 from Eq. 78

The fact that for the He atom ρ2(r1,r2) is in HF a simple product of the probabilities for

finding one electron at r1 and another at r2 means that there is no correlation between the

two electrons. As we will see later, HF gives only some sort of correlation called exchange

correlation between electrons of the same spin, but no correlation between electrons of

opposite spin

theta
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 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

-8 -6 -4 -2  0  2  4  6  8

pr
ob

ab
ili

ty
 r

ho
_2

theta (radians)

exact
2 determinants

HF

0-89



Hartree Fock treatment of the homogeneous electron gas
The homogeneous electron gas is a model system that is popular in investigations of many

electron effects in interacting electron systems. It consists of many electrons in a periodic

volume. A positive homogeneous background charge is added that exactly cancels the

charge of the electrons. One can imagine this background charge as arising from nuclei

whose nuclear charge is smeared out over the whole volume. Under normal conditions

it will turn out that the electronic density is a constant. Hence the total charge density at

any point in space is exactly zero and there is thus no classical electrostatic interaction

energy in the system. An analytical solution for the homogeneous electron gas can be

found in the HF approximation. It is not difficult to see that the normalized plane wave

Vol−1/2 exp(Ik ·r) is a solution of the canonical HF equation (Eq. 72) in a periodic cell of

volume Vol.

• Obviously a plane wave is an eigenfunction of the kinetic energy operator

• The electronic Hartree term is canceled by the ”nucleonic” potential arising from

the uniform background.

• The only non-trivial term is the exchange term of the Fock operator

∑
k′

∫
dr′

exp(Ik · r′)exp(−Ik′ · r′)
|r− r′| exp(Ik′ · r)
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Since the kernel 1
4π

1
|r−r′| is the inverse of ∇2 and a plane wave is a eigenfunction of

the Laplacian ∇2 we have

∫
dr′

exp(Ik · r′− Ik′ · r′)
|r− r′| ∝

1

k2
exp(Ik · r− Ik′ · r)

and a plane wave is indeed an eigenfunction of the exchange operator.

The lowest total energy is obtained by occupying all plane waves with a wave-vector k

whose modulus is less or equal to the Fermi wave-vector kF . Calculating the total energy

one finds

E = 2 ∑
k<kF

k2

2
− 3

4

(
3

π

)1/3 ∫
dr ρ4/3 (81)

where ρ is the constant charge density

Exercise [1pts]: Show that the electron density is a constant for plane wave orbitals

The fact the the exchange part of the energy density for the homogeneous electron gas is

proportional to ρ4/3 will later on be the starting point for the density functional treatment

of real systems.
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What is missing in Hartree Fock

• The true many electron kinetic energy that can be expressed in terms of the natural

occupation numbers ni and natural orbitals φNO
i (r) (Eq. 36) as

Ekin = ∑
i

ni

∫
φ∗NO

i (r)
−1

2
∇2φNO

i (r)dr (82)

is approximated by a finite sum over the occupied orbitals. For a closed shell system

this gives

Ekin = 2

N/2

∑
i=1

∫
φ∗HF

i (r)
−1

2
∇2φHF

i (r)dr

where φHF
i (r) are the HF orbitals. The lowest N natural orbitals are very similar to

the canonical HF functions. The critical approximation is putting all the occupation

numbers for the lowest N spin orbitals to 1 (or 2 for a close shell system) and all the

other ones to 0.

• It follows from Eq. 57 that γ2 is approximated in the HF method in terms of γ1 by

γ2(x1,x2;x′1,x
′
2) = γ1(x1;x′1)γ1(x2;x′2)− γ1(x1;x′2)γ1(x2;x′1)
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This form neglects correlations among anti-parallel spin electrons and takes only

partially into account correlations among parallel spin electrons. The effect is best

demonstrated for the homogeneous electron gas. If one calculates analytically the

HF pair correlation function (Eq. 33) for parallel and anti-parallel spin electrons and

compares with quasi exact numerical results one obtains plots with the following

behavior:
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Exercise [2pts]: Derive Eq. 82 from Eq. 37 and Eq. 36
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Exercise [2pts]: Is the HF total energy lower or higher than the exact total energy? Is

the HF kinetic energy higher or lower than the exact kinetic energy? Remember that the

virial theorem is valid both for the exact energy and the HF energy.
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Truncated CI and coupled cluster methods

As has been stated several times full CI and MRSCF calculations are not feasible com-

putationally except for very small molecules, since the number of determinants that can

be constructed from a given set of orbitals increases exponentially. So-called truncated

CI methods select out of this very large number of determinants only a small subset that

hopefully contains the most important contributions. The classification of the included

determinants is according to how many electrons are excited from occupied to virtual or-

bitals. The occupied and virtual orbitals are the canonical orbitals that are eigenfunctions

of the Fock matrix (Eq. 74). Remember that the occupied orbitals are by definition the

lowest N eigenfunctions that are used to construct the HF determinant. The virtual orbitals

are all the remaining eigenfunctions that have larger (generally positive) eigenvalues. Be-

cause the various determinants are constructed from the canonical HF orbitals, truncated

CI and coupled cluster methods are also frequently called post Hartree-Fock methods. Be-

cause post-HF methods add additional variational parameters in form of the coefficients

of the additional determinant wave-functions that are included, the energy is always lower

than the energy obtained with HF. By definition the difference between the full CI energy

and the HF energy is called the correlation energy. This name is misleading since, as

we have seen, the HF energy already includes correlations between electrons of the same

spin. But since the term correlation energy is universally used in the above described way

we will therefore follow this practice. Since truncated CI methods have less degrees of
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freedom than the full CI method they can recover only a certain fraction of the correlation

energy.

Let us now discuss in more detail the classification of determinants. In the following

occupied orbitals will be denoted by the indices i, j and virtual orbitals by a,b. A post-HF

wave-function can then have the following terms

• The HF ground state determinant Ψ0

• Single excitation determinants Ψa
i where the occupied orbital i is replaced by the

virtual orbital a.

• Double excitation determinants Ψ
a,b
i, j where the occupied orbitals i and j are replaced

by the virtual orbitals a and b.

• In the same way higher excitation determinants can be set up

Excitations higher than double excitations are rarely included in an exact way. The CI

method where excitations up to doubles are included is called CISD. If triple excita-

tions are included by perturbation theory the method is called CISD(T). The CISD wave-

function has the following form.

Ψ = Ψ0 +∑
i,a

Ca
i Ψa

i + ∑
i< j,a<b

C
a,b
i, j Ψ

a,b
i, j
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The number of terms in the above wave function increases as the 4th power with respect

to system size because both the number of occupied and virtual orbitals is proportional

to the system size. The size of the CI matrix is thus reduced in truncated CI methods

compared to the full CI matrix but the cost of calculating a matrix element is the same.

In the worst case it scales quadratically. The total numerical effort for the CISD method

increases therefore as the 6th power. This is clearly better than the exponential increase

of the full CI method but it nevertheless remains very costly.

The CISD as well as all other truncated CI methods have several severe shortcomings.

• The method is not size consistent. This means that the energy of a composite system

that consists of two subsystems that are separated by a very large distance is not

equal to twice the energy of the subsystem as it should be. This can be understood

in the following way. If we treat with CISD only a single subsystem, two electrons

of this subsystem can be excited. In the composite system we also can excite at

most 2 electrons and we can therefore not simultaneously excite 2 electrons in both

subsystems as it would be necessary to obtain a description that is of equal quality

as the CISD description of the single subsystem.

• It can be shown, that the method is not size extensive which means that the fraction

of the correlation energy recovered for a big system is less than for a small system.

It would therefore not make sense to apply CISD to extended systems such as solids.
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The above mentioned problems can be overcome by the so-called coupled cluster (CC)

wave function method. Through its action on the HF determinant Ψ0 we can define a

single excitation operator

T1Ψ0 =
occ

∑
i

vir

∑
a

Ca
i Ψa

i

a double excitation operator

T2Ψ0 =
occ

∑
i< j

vir

∑
a<b

C
a,b
i, j Ψ

a,b
i, j

and higher order excitation operators. The coupled cluster wave-function Ψcc is now given

by

Ψcc = exp(T )Ψ0

where the cluster operator T is given by

T = T1 +T2 + ...

If the cluster operator includes single and double excitations the method is called CCSD.

Through the exponential ansatz higher excitations are however built into the wave-function
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as one can easily see by expanding the exponential

exp(T1 +T2) = 1+T1 +

(

T2 +
1

2
T 2

1

)

+

(

T2T1 +
1

6
T 3

1

)

+

(
1

2
T 2

2 +
1

2
T2T 2

1 +
1

24
T 4

1

)

+ ...

The last term in brackets represents for instance quadruple excitations since all-together 4

occupied orbitals are replaced by virtual orbitals.

Calculating the CCSD wave-function means determining the amplitudes Ca
i and C

a,b
i, j of

the single and double excitation operators. Determining these amplitudes is more difficult

than determining for instance the coefficients of the single and doubly excited determi-

nants in a CISD calculation. The CISD wave-function is linear in the expansion coef-

ficients and therefore the energy is a quadratic form. As a consequence the coefficients

can be found by solving an eigenvalue problem. In the CCSD method the ansatz for the

wave-function contains higher powers of the excitation amplitudes. The energy expecta-

tion value is therefore not any more a quadratic form and the CC method does allow for a

solution in terms of an eigenvalue problem. As a matter of fact, the calculation of the en-

ergy expectation value is too complicated. The CC wave-function is therefore determined

by projection methods. This leads to a set of coupled nonlinear equations for the excita-

tion amplitudes. Because of this solution method the CC method is not variational, i.e.

one can obtain an energy that is lower than the true energy. Nevertheless the CC method is

considered to be one of the best post HF methods, especially because it is size consistent
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and extensive. In addition to the CCSD method the CCSD(T) method is popular where

triple excitation are included in perturbation theory. The scaling of the traditional imple-

mentations of the CCSD and CCSD(T) methods is the same as of the CISD and CISD(T)

method, namely M6 and M7 where M is the size of the basis set.
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Many body perturbation theory

Hartree Fock calculations frequently do not give the desired accuracy, whereas full or even

truncated configuration interaction calculations are computationally not feasible. Under

such circumstances a popular compromise between cost and accuracy is many body per-

turbation theory as derived by Möller and Plesset which gives a M5 scaling with a small

prefactor. In this scheme the zero-th order Hamiltonian H0 is based on the Fock operator.

H0 = ∑
i

F (xi,x
′
i)

Hence the perturbation V is the difference between the exact coulombic electron-electron

interaction and the approximation of this interaction in the Fock operator:

V = ∑
i< j<N

1

|ri− r j|
−∑

i

F e−e(xi,x
′
i) (83)

where

F e−e(x,x′) = δ(x−x′)VH(r)−∑
j

ψ∗j(x
′)

|r− r′|ψ j(x)

The orbitals used for the construction of the Fock operator are the canonical Hartree Fock

orbitals. It is easy to see that the HF wave function is an eigenfunction of H0 with eigen-

value E(0) = ∑N
i=1 εi.
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Exercise [2pts]: Prove the above statement

Hence the HF wave-function Ψ0 is also the zero-th order wave-function for the ground

state. Note that the zero-th order energy is not equal to the HF energy

The first order energy E1 = E0 +∆E1 in perturbation theory is given by

∆E(1) = 〈Ψ0|V |Ψ0〉=
∫

dx1, ...,
∫

dxNΨ∗0(x1, ...,xN)V Ψ0(x1, ...,xN)

Since the second part of V in Eq. 83, F e−e is a one body operator, its energy expectation

value can be obtained in terms of the one particle density matrix which is given for the HF

wave-function by Eq. 54.∫
dx1, ...,

∫
dxNΨ∗0(x1, ...,xN)F e−e Ψ0(x1, ...,xN)

=
∫ ∫

dxdx′F e−e(x,x′)γ1(x
′,x)

=
∫ ∫

dxdx′
(

ρ(r)

|r− r′|δ(x−x′)γ1(x,x
′)+

∑ j φ j(x)φ j(x
′)

|r− r′| γ1(x,x
′)

)

= ∑
i, j

[ii| j j]− [i j| ji]

Evaluating the first part of V in Eq. 83, ∑ 1
|ri−r j | , gives obviously the HF expression for the

electron electron interaction which is identical to the above expression up to a constant.
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Hence

E(1) =
N

∑
i=1

εi−
1

2

N

∑
i=1

N

∑
i= j

([ii| j j]− [i j| ji])

Thus E1 is identical to the HF total energy as expressed in Eq. 75.

Let us next calculate the second order perturbation correction to the energy which is given

by

∆E(2) = ∑
l=1,...

|〈Ψ0|V |Ψl〉|2

E
(0)
0 −E

(0)
l

(84)

The Slater determinant Ψl denotes the l-th excited state of H0. Such states can be formed

by constructing single determinant wave-functions out of the occupied and virtual canon-

ical HF orbitals. All these determinants are by construction eigenfunctions of H0. Many

possibilities exist to form such determinants. We will classify them by how many of the

occupied HF orbitals are replaced by virtual orbitals. In single excitations we replace one

occupied HF orbital by a virtual one, in double excitation we replace two and so on. In the

following the indices a and b will denote occupied orbitals whereas r and s denote virtual

orbitals. Ψr
a will thus denote a determinant where the occupied orbital a was replaced

by the virtual orbital r and Ψrs
ab a determinant where the occupied orbitals a and b were

replaced by the virtual orbitals r and s.
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Let us first consider the single excitations. The relevant matrix elements in Eq. 84 are

〈Ψ0|V |Ψr
a〉= 〈Ψ0|H −H0|Ψr

a〉

Since Ψ0 is a eigenfunction of H0 we have

〈Ψ0|H0|Ψr
a〉= E〈Ψ0|Ψr

a〉= 0

From Eq. 47 and Eq. 73 it follows that

〈Ψ0|H |Ψr
a〉=

∫
dx

∫
dx′ψa(x)F (x,x′)ψr(x

′) = 0

〈Ψ0|H |Ψr
a〉 is thus an off-diagonal element of the Fock matrix. Since the Fock matrix is

diagonal for canonical HF orbitals the term vanishes as well. Consequently there are no

contributions to ∆E(2) from single excitations. Triple and higher excitations do not give a

contribution either. This follows from the Slater Condon rule (Eq. 48).

Contributions arise only from double excitations. From Eq. 47 we get

〈Ψ0|H |Ψrs
ab〉= [ar|bs]− [as|br]

〈Ψ0|H0|Ψrs
ab〉 is zero for the same reasons as in the case of the single excitations. Since

the zero-th order energy of any determinant is equal to the sum over all the eigenvalues
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associated to the orbitals out of which it is build we get E
(0)
0 −E

rs (0)
ab = εr− εa + εs− εb

and the final result for the second order energy, which is denoted in the quantum chemistry

literature as MP2, is:

∆E(2) = ∑
a<b

∑
r<s

|[ar|bs]− [as|br]|2
εa + εb− εr− εs

(85)

The MP2 energy expression includes van der Waals interactions. This can easily be seen

by considering two helium atoms A and B that are far away, i.e. rAB is very large. In

this case a set of canonical HF orbitals of the entire system consists of the union of the

canonical HF atoms for the two isolated atoms. Let us assume that orbital a is a 1s like

orbital centered at atom A and orbital r a 2p like orbital also centered at A. b and s are

orbitals of the same type as a and r but centered on the other atom B. Since we have a

closed shell system, the matrix element [ar|bs] of Eq. 85 is then given by

[ar|bs] = 4

∫ ∫
dr dr′

ψ1s(r−RA)ψ2p(r−RA)ψ1s(r
′−RB)ψ2p(r

′−RB)

|r− r′|

The charge distribution ρA(r) = ψ1s(r−RA)ψ2p(r−RA) does not have a monopole be-

cause the two canonical orbitals ψ1s and ψ2p centered on A are orthogonal. In the same

way ρB(r) = ψ1s(r−RB)ψ2p(r−RB) does not have a monopole. However both charge

distributions have a dipole moment. Hence [ar|bs] represents a dipole-dipole interaction
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which decays like r−3
AB . Since the matrix elements are squared in Eq. 85, ∆E(2) ∝ r−6

AB

which is the well know decay behavior of van der Waals interactions. Van der Waals

interactions are also included in truncated CI and coupled cluster methods as soon as dou-

ble excitations are included since in this case one has CI matrix elements that contain the

same type of [ar|bs] terms.

Möller Plesset perturbation theory can be carried on to higher order. In addition to MP2,

MP3 and MP4 are used. Higher order terms are too expensive to calculate. In addition the

perturbation series frequently diverges.

Exercise [2pts]: How rapidly decay the interactions induced by the term [as|br] in Eq. 85.

Use the fact that the canonical orbitals decay exponentially far away from their centers

RA and RB
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Density functional theory

Density functional theory is at present the most popular method for electronic structure

calculations. It is faster than HF and the best functionals give usually higher accuracy

than HF. The Hohenberg Kohn theorem is the central result upon which density functional

theory is built. It demonstrates that there exists an universal functional of the density F [ρ]
from which the ground state can be obtained by minimizing

F[ρ]+
∫

Ven(r)ρ(r)dr

over all ρ(r). The charge density that gives the minimum is the charge density of the

ground state ρ0(r) and the total energy of the ground state E0 is given by

E0 = F [ρ0]+

∫
Ven(r)ρ0(r)dr

Ven(r) is the external potential due to the nuclei

Ven(r) =
Nat

∑
j=1

−Z j

|r−R j|
(86)
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Before reproducing the original proof by Hohenberg and Kohn, a proof that gives an

in-principle construction of the exact functional will be presented. It is called the Levy

constrained search formalism. From the variational principle we know

E = min 〈Ψ|H |Ψ〉
Ψ

where 〈Ψ|H |Ψ〉 equals
∫

dx1...
∫

dxNΨ(x1, ...,xN)H Ψ(x1, ...,xN) and the search is over

all normalized antisymmetric wave-functions Ψ. We can now split up this search into two

parts or two ’loops’. In the inner loop we search over all wave-functions that give a certain

charge density ρ and in the outer loop we search over all possible charge densities ρ

E = min min 〈Ψ|H |Ψ〉
ρ Ψ→ ρ

H (Eq. 27) consists of a kinetic energy part Hkin, an electron-electron interaction part Hee

and an electron-nucleus interaction part Hen. Whereas the contributions from Hkin and

Hee depend implicitly on ρ the Hen depends explicitly on ρ and can therefore be taken

outside the constrained minimization over all the wave-functions. The inner minimization
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loop therefore becomes

min 〈Ψ|Hkin +Hee|Ψ〉+
∫

Ven(r)ρ(r)dr

Ψ→ ρ

We now define the universal functional F[ρ] as

F [ρ] = min 〈Ψ|Hkin +Hee|Ψ〉 (87)

Ψ→ ρ

It is universal because Hkin +Hee is independent of the atomic positions R j and therefore

the same for any chemical system. Hence

E = min F [ρ]+
∫

Ven(r)ρ(r)dr

ρ

Let us now go back to the original Hohenberg-Kohn theorem. The Hohenberg-Kohn theo-

rem states that the external potential (Eq. 86) is determined uniquely, except for a constant,

by the ground state density ρ0(r). The proof is straightforward. Suppose there were two

different external potentials, V1(r) and V2(r) which differ by more than a constant and
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which lead to the same ground state density ρ0(r). The two external potentials lead to two

different hamiltonians H1 and H2. The two hamiltonians in turn give rise to two different

many-electron wave-functions Ψ1 and Ψ2 which are hypothesized to have the same ρ0(r).
Since Ψ2 is not the ground state of H1 it follows from the variational principle that

E1 = 〈Ψ1|H1|Ψ1〉< 〈Ψ2|H1|Ψ2〉
The strict inequality is justified by the assumption that the ground state is non-degenerate.

The last term can be written

〈Ψ2|H1|Ψ2〉 = 〈Ψ2|H2|Ψ2〉+ 〈Ψ2|(H1−H2|Ψ2〉 (88)

= E2 +
∫

(V1(r)−V2(r))ρ0(r)dr (89)

so that

E1 < E2 +
∫

(V1(r)−V2(r))ρ0(r)dr

Since we can exchange the role of the two superscripts 1 and 2 we can also obtain

E2 < E1 +

∫
(V2(r)−V1(r))ρ0(r)dr

Adding the two equations we arrive at the contradictory inequality

E1 +E2 < E1 +E2
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This establishes the desired result. There cannot be two different external potentials dif-

fering by more than a constant which give rise to the same non-degenerate ground state

density.

The Hohenberg-Kohn theorem has far reaching consequences. Once we know the poten-

tial we can in principle calculate the many-electron wave function and from it any physical

properties. Hence any physical property is already determined by the density. In particular

the energy is determined by the density and the functional F [ρ0] of Eq. 87 has to exist.

Both the Levy constrained search formalism and the Hohenberg-Kohn theorem do not

tell us what the explicit form of the functional is. Finding such a functional is actually

a rather difficult task and as a matter of fact no fully satisfactory form has been found

up to now. By ’looking’ at the charge density it is already very difficult to determine

very fundamental things about a system such as whether it is an insulator or metal or

where the chemical bonds are. So finding an accurate energy only from the density is

still much harder. The most difficult part in F [ρ] is the kinetic energy part. Practically

all density functional calculations are therefore done in the Kohn-Sham scheme where the

many electron kinetic energy is written as the kinetic energy of N independent Kohn-Sham

orbitals φKS
i (r)

Ekin =
N

∑
i=1

∫
φ∗KS

i (r)
−1

2
∇2φKS

i (r)dr (90)

plus a correction term that is supposed to account for the difference between the many
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electron kinetic energy of Eq.82 and the independent particle kinetic energy of Eq.90.

The canonical Kohn-Sham orbitals are like their HF counterpart very similar to the lowest

N natural orbitals. This kinetic energy correction term plus the non-classical part of the

electron-electron interaction are combined into the so-called exchange correlation energy

Exc. The most important term in the exchange correlation energy is the exchange term

that was found in the HF energy expression of the homogeneous electron gas Eq. 81 and

is proportional to ρ(r)4/3.

Exc[ρ(r)] =
∫

dr const×ρ(r)4/3 +other terms

Depending on the nature of the ’other terms’ we have the following classification:

• Local Density Approximation (LDA): the ’other terms’ in the exchange correlation

functional depend only on the charge density ρ(r). The numerical form of Exc was

obtained by a fit to highly accurate numerical many electron calculations based on

the Quantum Monte Carlo method. This approximation is thus quasi exact for the

homogeneous electron gas and is supposed to be accurate if the variation of the

charge density is weak. For this reason it works best for solids. In the case of atoms

or molecules the density decays to zero on the surface of the atom or molecule and

it can not any more be considered as slowly varying. The LDA approximation gives

typically a too high energy for such finite systems. As a consequence the bonding

0-112



energies of solids are in general too large. The bonding energy is the difference in

energy between the energy of a system containing many individuals atom and the

energy of the solid that these individual atoms can form.

• Generalized Gradient Approximation (GGA): the exchange correlation functional

depends on the charge density ρ(r) and its gradient. Systems with rapidly varying

charge densities are better described. Since GGA functionals have to coincide with

the LDA exchange correlation functional for the case where the density is constant,

the functional form of these GGA’s is typically the following. The LDA functionals

times an enhancement factor that goes to one for a constant density, but grows to

values larger than one if the gradient is non-vanishing. The enhancement factor

depends on the reduced dimensionless gradient s

s(r) =
|∇ρ(r)|

2(3π2)1/3ρ(r)4/3

• meta GGA: depends in addition on the kinetic energy density ∑N
i=1 φ∗KS

i (r)∇2φKS
i (r)

• hybrid functionals: contain in addition some fraction of the HF exchange energy

Within each class of exchange correlation functionals there are many proposed forms.

This zoo of functionals is so large that it is difficult to keep track of all functionals on the

market.
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The Kohn-Sham equations in the LDA approximation
For simplicity we will consider a closed shell system. The LDA total energy is given by

E =−
N/2

∑
i=1

∫
φ∗i (r)∇

2φi(r)dr+
∫

Ven(r)ρ(r)dr+
1

2

∫
ρ(r)ρ(r′)
|r− r′| dr′dr+ELDA

xc [ρ(r)]

(91)

where the charge density ρ(r) is the sum over the square of all the occupied Kohn-Sham

orbitals

ρ(r) = 2

N/2

∑
i=1

φ∗i (r)φi(r) (92)

The first term in Eq. 91 is the kinetic energy of N independent electrons, the second the

interaction of the electrons with the nuclei and potentially other external potentials, the

third the classical electron-electron repulsion and the last the above described exchange

correlation energy. The Kohn-Sham equations are obtained by minimizing the total energy

expression Eq. 91 under the constraint that the orbitals φi are orthonormal. The procedure

is analogous to the HF case. Applying the rules for functional derivatives, we obtain for

the unconstrained gradient di(r) =
1
2

δE
δφ∗i (r)

di(r) =−
1

2
∇2φi(r)+Ven(r)φi(r)+

∫
ρ(r′)
|r− r′|dr′ φi(r)+ vLDA

xc (ρ(r))φi(r) (93)
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where the exchange correlation potential is defined as

vLDA
xc (ρ(r)) =

δELDA
xc (ρ(r))

δρ(r)

Introducing the Kohn-Sham Hamiltonian H KS

H KS =−1

2
∇2 +V (r) (94)

where the Kohn-Sham potential V is the sum of the external potential, the Hartree potential

and the exchange correlation potential

V (r) =Ven(r)+
∫

ρ(r′)
|r− r′|dr′+ vLDA

xc (ρ(r))

the unconstrained gradient can simply be written as

di(r) = H KSφi(r) (95)

The condition that the constrained gradient vanishes becomes according to Eq. 67

H KSφi(r)−
N/2

∑
j=1

Λi, jφ j(r) = 0 (96)
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where

Λi, j =
∫

φ∗j(r)di(r)dr =
∫

φi(r)d
∗
j (r)dr =

∫
φ∗j(r)H

KSφi(r)dr (97)

Exercise [3pts]: Using functional derivatives verify Eq. 93

As in the HF case the total energy (Eq. 91) is invariant under unitary transformations

among the occupied orbitals. We may therefore again choose canonical orbitals which

diagonalize the matrix Λ in Eq. 97 and the condition that the constrained gradient vanishes

(Eq. 96) results in the eigenvalue problem

H KSφi(r) = εiφi(r) (98)

The canonical orbitals satisfying the above equation are called the Kohn-Sham orbitals

and the eigenvalues are called the Kohn-Sham energies. Like in HF only the occupied

orbitals enter into the energy expression of Eq. 91. The virtual levels have no physical

meaning except that the virtual εi’s give like in HF approximative electron affinities. The

occupied εi’s give also like in HF approximate ionization energies.
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Spin polarization

Up to now we have ignored spin in our treatment of density functional theory. For a

closed shell system where the density of spin up electrons equals the density of the spin

down electrons, it is indeed only the density that matters. For other systems such as

magnetic systems we have a spin polarization which means that the up and down electron

densities are not equal. In such a case we have to use an exchange correlation functional

that depends both on the density of the spin up and spin down electrons and, and in the

case of a GGA on the gradients of these two densities. There exist versions of all current

exchange correlation functionals that allow for the inclusion of spin polarization.

The spin polarization is determined by the spin quantum number Sz. The energy of a true

many electron system does not only depend on Sz but also on the spin quantum number

S2. This later dependence is not taken into account by the current exchange correlation

functionals. Wave-function methods such as CI have to be used to describe the spin mul-

tiplicity of atoms and molecules.
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Treatment of system with degeneracies at the Fermi level
For systems with a degeneracy or near degeneracy at the Fermi level, i.e. for systeams

where the Homo-Lumo gap either vanishes or is very small, so called fractional occupa-

tion numbers have to be introduced to obtain convergence in electronic structure calcu-

lations. In those schemes virtual orbitals get assigend some small occupation numbers,

whereas the occupation number of the highest occupied orbitals are somewhat reduced

from one. Based on the fractional occupation numbers we next define some ”free energy”

functional F =E−TS that consists of an energy term E very similar to the non-degenerate

case plus some entropy term S. We consider again for simplicity a closed shell system.

F =−
∞

∑
i=1

fi

∫
φ∗i (r)∇

2φi(r)dr+
∫

Ven(r)ρ(r)dr+
1

2

∫
ρ(r)ρ(r′)
|r− r′| dr′dr+ELDA

xc [ρ(r)]

+2kBT
∞

∑
i=1

fi ln( fi)+(1− fi) ln(1− fi) = E−TS (99)

where the charge density ρ(r) is now also given by a slightly modified formula:

ρ(r) = 2
∞

∑
i=1

fiφ
∗
i (r)φi(r) (100)

In practice it is not really necessary to extend the summation in the above formula up to

infinity since the occupation numbers fi tend rapidly towards zero when the eigenvalues εi
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get large. The term S =−2kB ∑i fi ln( fi)+(1− fi) ln(1− fi) in Eq. 99 can be interpreted

as some kind of electronic entropy term of an electron-hole system. The main practical

advantage of this term is however that it allows for a fully variational treatment with simple

derivative formulas. If we consider the fi’s as additional variational degrees of freedom,

we can calculate in the Lagrange multiplier formalism the derivative of F with respect to

the occupation numbers under the constraint that all the occupation numbers sum up to

the total number of electrons N

dF

d fi

=
∂

∂ fi

[

F−µ

(

∑
j

f j−N

)]

=
∂F

∂ fi

−µ = 0 (101)

where µ is the Lagrange multiplier. In the chosen notation, dF
d fi

is meant to be the total

gradient including the constraint. Now

∂E

∂ fi

= 〈εi〉

where 〈εi〉 is the energy expectation value of the orbital φi. In addition

1

kB

∂S

∂ fi

=−(ln( fi)+1− ln(1− fi)−1) = ln

(
1− fi

fi

)

0-119



Zeroing the total gradient of Eq. 101 therefore gives

〈εi〉−
1

β
ln

(
1− fi

fi

)

−µ = 0

where β = 1/(kBT ) . Solving the above equation for fi gives

fi =
1

1+ exp(β(〈εi〉−µ))
(102)

where µ is determined by the constraint ∑i fi = N.

Let us next calculate the unconstrained gradient di(r) of F with respect to the orbitals.

We have to take into account that F depends not only directly on the orbitals φi but also

indirectly through the fi’s.

di(r) =
∂F

∂φ∗i (r)
+∑

j

dF

d f j

∂ f j

∂φ∗i (r)
(103)

If we now require that the fi’s satisfy Eq. 102, i.e. that they minimize F for the present

given set of orbitals, then dF
d f j

= 0 and the second term disappears. Hence

di(r) =
∂F

∂φ∗i (r)
= fiH

KSφi(r) (104)
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The Lagrange multipliers imposing the orthogonality constraints of Eq 67 are then given

by

Λi, j =
1

2
( fihi, j + f jhi, j) (105)

where hi, j =< φi|H KS|φ j > Hence the constrained gradient is given by

δF

δφ∗i (r)
= fiH

KSφi(r)−∑
j

1

2
( fi + f j)hi, jφ j(r) (106)

It can immeadiatley be seen that this gradient expression is zero if the φ j(r)’s are eigen-

functions of H KS, in which case hi, j = εiδi, j. In this case the expectation value in Eq. 102

also becomes an eigenvalue and we recover the well established Fermi distribution fi. So

also in this case the equivalence of a variational minization of the free energy expression

and an approach based on a selfconsistent diagonalization of the Kohn-Sham Hamiltonian

is guaranteed.

The temperature in a free energy functional also mimics in a certain sense many body

effects. As we have seen introducing electronic correlation lowers the energy, even though

the kinetic energy increases. The free energy also decreases with increasing temperature

even though the kinetic energy increases.

Exercise [2pts]: Prove that
dF0
dT

< 0 where F0 is a minimum of the free energy functional

F with respect to the occupation numbers and orbitals
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The ionic forces are given by the same expression (Eq. 41) with respect to ρ indepen-

dently of whether the energy or free energy functional is used. When we calculate the

derivative of the F or E with respect to the atomic positions, we have to consider in prin-

ciple also the variation of the wave functions φi or the occupation number fi with respect

to the atomic positions. Since by Eq. 102 the occupation numbers depend on the orbitals

this later dependence can be included in the φi dependence,

dF

dX1
=

∂F

∂X1
+∑

i

dF

dφi

∂φi

∂X1
(107)

Here dF
dφi

denotes again the total derivative, i.e the derivative that includes all the con-

straints, This derivative is zero since F is minimized with respect to the φi’s under the

constraints. Hence the forces are given by the standard Hellmann-Feynman formulas:

dF

dX1
=

∂F

∂X1
=−Z1

∫
ρ(r)

X1− x

|R1− r|3 dr+
Nat

∑
j=2

Z1Z j(X1−X j)

|R1−R j|3
(108)

where ρ is given by Eq. 100.
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Gaussian smearing schemes
The previous approach for handling degeneracies is appealing since it leads to a Fermi

distribution of the fractional occupation numbers. It has however the disadvantage that the

Fermi distribution does not decay very rapidly to zero and that is is therefore necessary to

include a substantial number of virtual orbitals in the calculation. For this reason so-called

Gaussian smearing schemes are frequently used. In this case the relation between fi and

〈εi〉 is given by

f Gaus
i =

1

2
(1− er f (β(εi−µ))

For this distribution the fi’s have an extremely fast Gaussian like decay for large 〈εi〉’s. If

one scales the temperature by 4/
√

π the resuling distribution function

f scaled
i =

1

2
(1− er f (β

4√
π
(〈εi〉−µ))

has the same slope at the Fermi level and is therefore very similar to the Fermi distribution

in the region around the Fermi level, which is set to zero in the Figure below. β is set to

one.

0-123



The entropy like term has be chosen in a Gaussian smearing scheme as

S = ∑
i

1

2
√

π
exp(−β(εi−µ))

The entropy functions look then also rather similar to the case of the Fermi distribution

case as shown below.
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Major shortcoming of density functional schemes

• The theoretical foundations of the Kohn-Sham scheme are uncertain:

Whereas the Hohenberg-Kohn theorem is rigorous, the Kohn-Sham theorem is based

on an unproven assumption, namely the so-called non-interacting V-representability

condition. This condition assumes that there exists for the density of any system of

interacting electrons a potential such that the density of non-interacting electrons

moving in this potential is identical to the density of the interacting electrons.

• Failure to describe spin multiplicity:

This was discussed before

• Failure to describe strongly correlated systems:

There exists at present no functional that could describe in a qualitatively correct

way strongly correlated systems

• Failure to describe transition states:

The total energies predicted for transition states are very unreliable. Both in this

case and in the case of strongly correlated systems the true wave-function has not

only one dominating determinant but several important determinants. This multi-

configuration character of the wave-function becomes visible in the occupation
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numbers. Since the occupation number of a certain natural orbital is equal to the

sum of the squared coefficients of all the determinants that contain this natural or-

bital, there will be occupation numbers that are neither close to one or zero. If

there is only one dominating determinant, the occupation number of the occupied

natural orbitals contained in this determinant will be close to one whereas the occu-

pation numbers of all the other virtual orbitals are very small. That the Kohn-Sham

methods fail in this case is not so surprising. The Kohn-Sham kinetic energy term

(Eq. 90) does not any more give high precision for the kinetic energy of the system

of interacting electrons which, according to Eq. 82 will have important contribu-

tions from some virtual orbitals.

• Failure to describe van-der Waals forces:

Even though van-der Waals forces are important for a wide range of problems such

as the interaction of biomolecules, standard functionals do not include them. Func-

tionals that include van-der Waals interaction are however now beginning to appear

but they are numerically costly and their accuracy is not yet firmly established.

• No integer preference:

When a molecule is torn apart into two fragments each fragment will have an in-

teger number of electrons. If one pulls apart for instance the two atoms in a NaCl

molecule then each atom will either be neutral or perhaps Cl has captured one of
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the electrons of the Na. If one pulls apart in density functional theory the NaCl

molecule the two atoms will have non-integer charges.

• Gap problem:

The particle gap of a solid is defined as the difference between the electron affinity

and the ionization energy. For a finite system this quantity can be calculated as

(E(N +1)−E(N))− (E(N)−E(N−1))

and DFT results are rather reasonable. It can be shown that for an infinite system

this quantity is given by the difference εLUMO− εHOMO, where εHOMO is the Kohn-

Sham eigenvalue of the Highest Occupied Molecular Orbital and εHOMO the eigen-

value of the Lowest Unoccupied Molecular Orbital. Both the HOMO and LUMO

orbital satisfy Eq. 98. The HOMO is the orbital number N (N/2 for a closed shell

system) and the LUMO is the orbital number N +1 (N/2+1). The HOMO enters

into the expressions for the total energy, whereas the LUMO does not. The differ-

ence εLUMO− εHOMO is much smaller than the experimental particle gap in most

density functional schemes.

• Imperfect cancellation of the self-interaction:

As we have seen in the discussion of the HF method one orbital does not interact

with itself. This kind of unphysical self-interaction is however contained in all stan-

dard density functional schemes. The problem can most easily be seen in the case
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of the hydrogen atom. In principle the exchange correlation potential should cancel

the Hartree potentials, but it does not completely in practice. As a consequence den-

sity functional theory does not give the correct total energy of -1/2 for the hydrogen

atom. The consequences of the incomplete cancellation of the self-interaction are

most detrimental for single electron systems and for open shell systems that have a

localized reactive unpaired electron. The imperfect selfinteraction cancellation also

prevents the stable bonding of an additional electron to a neutral atom, since the

Kohn-Sham potential decays exponentially to zero whereas it should decay to zero

like 1/r.

• Can not be improved in a systematic way:

The wave-function methods that were previously discussed can be improved in a

systematic way. In a CCSD calculation one can for instance include triple excita-

tions as well to get a more accurate answer if the computing time allows for it. Such

improvements are not possible in density functional theory.

In spite of all these shortcomings, it must be stressed again that density functional theory

is at present the most widely used method for electronic structure calculations, because it

gives surprisingly good energies with an acceptable numerical effort as can be seen from

the two tables below.
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The first table shows typical errors for various quantities. QCISD is another truncated CI

method similar to the CCSD method. The error in the barrier is for the chemical reaction

H2 +H → H +H2. The experimental barrier is 9.7 and LDA predicts no barrier at all

for this reaction. All other errors are averages over certain test sets containing various

molecules.

Error in: HF MP2 QCISD LDA GGA

bond length (Angstroem) 0.020 0.014 0.013 0.021 0.020

bond angle (degrees) 2.0 1.8 1.8 1.9 2.3

frequencies (cm−1) 59 63 37 45

atomization energies (kcal/mol) 86 22 29 36 6

barrier (kcal/mol) 7.9 3.5 .2 -13 -5.6

The table below gives some indication of the size of the system that can be treated with

different methods. Tight Binding (TB) is an approximative quantum mechanical method

and Force Fields (FF) represent a parameterization of the Born Oppenheimer surface.

HF MP2 QCISD LDA GGA TB FF

Number of atoms 200 50 10 500 500 5000 100 000
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Basic approaches to the numerical solution of the Kohn-Sham equa-
tions

There are two possibilities to solve the Kohn-Sham equations

• Direct numerical minimization of the total energy:

One calculates the gradient (Eq. 96) and ”goes down” along this gradient until it

vanishes

• Self-consistent eigenvalue problem:

One solves the eigenvalue problem of Eq. 98. The equation is however more diffi-

cult than a simple eigenvalue problem. Note that the Hartree and exchange corre-

lation potentials depend on the charge density. The correct charge density which is

given in terms of the solution by Eq. 92 is of course not yet available at the start of

the calculation. This problem can be circumvented by self-consistency iterations.

One repeats the solution of the eigenvalue problem until the output charge density

calculated form the eigenorbitals is equal to the input charge density that was used

for the calculation of the potential. In the resulting flowchart shown below it is

also assumed that the eigenvalue problem is solved by an iterative eigenvalue prob-

lem solver. The eigenvalue iterations are indicated by the small blue inner box, the

self-consistency iterations by the large blue outer box.
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Initial guess for input charge density ρin

Calculate Hamiltonian (depends on ρin)

Initial guess for eigenvectors

Improve eigenvectors

Calculate residue

Calculate output charge density ρout

Find new input charge density ρnew
in

Self-consistent solution found

If residue small enough

If charge density converged
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Discretization of continuous differential equations
Up to now we have used in this course the language of traditional calculus, i.e. continuous

functions and differential and integral operators acting on these functions. This language

is not suited for numerical work, since one can not represent a continuous function on

a computer. All one can represent are vectors of numbers. For numerical processing

we consequently have to discretize our equations. This is done by expanding the wave-

function in terms of a finite number M of basis functions Uk(r)

ψi(r) =
M

∑
k=1

ui(k)Uk(r) ; ψ∗i (r) =
M

∑
k=1

u∗i (k)U
∗
k (r) (109)

This gives us an energy expression that depends on N finite vectors ui(k) of length M.

Taking then the partial derivatives with respect to the degrees of freedom ui(k) of the

numerical wave-function under the orthogonality constraints gives a set of discrete Euler-

Lagrange equations, whose solution will provide us with the numerical wave-function that

minimizes the energy within this basis set, i.e. with the numerical solution. The partial

derivatives containing the orthogonality constraints can be calculated using the chain rule

∂E

∂u∗i (k)
=

∫
δE

δψ∗i (r)
∂ψ∗i (r)
∂u∗i (k)

dr =
∫

δE

δψ∗i (r)
U∗k (r)dr (110)
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In analogy to Eq. 64 we defined the unconstrained gradients

d j(k) =
1

2

∫
δE

δψ̃∗j(r)
∂ψ̃∗(r)
∂u∗j(k)

dr =
∫

d j(r)U
∗
k (r)dr (111)

d∗j (k) =
1

2

∫
δE

δψ̃ j(r)

∂ψ̃(r)

∂u j(k)
dr =

∫
d∗j (r)Uk(r)dr (112)

We have not introduced here coefficients ũ j(k) since, as explained previously, we imme-

diately switch back to orthonormal orbitals after calculating derivatives. Using the chain

rule of Eq. 110 in the expression for the constrained gradient Eq. 67 we obtain

1

2

∂E

∂u∗i (k)
=

∫
di(r)U

∗
k (r)dr − 1

2
∑

j

(∫
d∗j (r

′)ψi(r
′)dr′

)∫
ψ j(r)U

∗
k (r)dr

− 1

2
∑

j

(∫
di(r

′)ψ∗j(r
′)dr′

)∫
ψ j(r)U

∗
k (r)dr

Using the definition of the discrete unconstrained gradient of Eq. 111 the integrals can be

replaced by sums in the Lagrange multiplier matrix

Λi, j =

∫
d∗j (r

′)ψi(r
′)dr′ = ∑

k

ui(k)

∫
d∗j (r

′)Uk(r
′)dr′ = ∑

k

ui(k)d
∗
j (k) (113)
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The remaining two integrals can be expressed in terms of the overlap matrix S

∫
U∗k (r)ψ j(r)dr = ∑

l

u j(l)
∫

U∗k (r)Ul(r)dr = ∑
l

S(k, l)u j(l) (114)

Note that this overlap matrix S(k, l) =
∫

U∗k (r)Ul(r)dr is the overlap matrix between the

basis functions and it should not be confused with the overlap matrix between the orbitals

Si, j =
∫

ψi(r)ψ j(r)dr. We thus obtain the final expression for the discrete gradient under

the orthogonality constraints

1

2

∂E

∂u∗i (k)
= di(k)−

1

2
∑

j

(
Λi, j +Λ∗j,i

)

∑
l

S(k, l)u j(l) (115)

where Λi, j is given by Eq. 113. Eq. 115 is the central equation for numerical work. It

is valid for any independent particle scheme such as HF or Density Functional theory.

What changes from one independent particle scheme to the other is only the form of

the unconstrained gradient di. In the discrete case the solution vectors ui are again not

uniquely defined. Any other set of vectors that is related to the original set of vectors

by an unitary transformation is an equally valid solution. There exists therefore a set of

solution vectors that diagonalizes Λ and satisfies

d j(k)− ε j ∑
l

S(k, l)u j(l) = 0 (116)
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Eq. 116 is the basic equation if a selfconsistent diagonalization approach is adopted

whereas Eq. 115 is the basic gradient expression in a numerical minimization procedure.

Once one has found the solution vectors of Eq. 115 one can transform the set of solution

vectors ui into the canonical set satisfying Eq. 116 if the canonical orbitals are desired.

It is instructive to consider the simplest case of a system of N non-interacting electrons in

an external potential Vext(r). The total energy of such a system is given by

E =
N

∑
i=1

∫
ψi(r)

(

−1

2
∇2 +Vext(r)

)

ψi(r)dr =
N

∑
i=1

εi (117)

The unconstrained gradient of Eq. 117 is

di(r) =

(

−1

2
∇2 +Vext(r)

)

ψi(r) = H ψi(r)

Hence the discrete unconstrained gradient of Eq. 111 is

di(k) = ∑
l

ui(l)
∫

U∗k (r)H Ul(r) = ∑
l

H(k, l)ui(l)

and the constrained gradient of Eq. 115 becomes

1

2

∂E

∂u∗i (k)
= ∑

l

H(k, l)ui(l)−
1

2
∑

j

(
Λi, j +Λ∗j,i

)

∑
l

S(k, l)u j(l) (118)
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The canonical equations Eq. 116 become

∑
l

H(k, l)ui(l)− εi ∑
l

S(k, l)ui(l) = 0 (119)

Eq. 119 is just the generalized eigenvalue problem known from elementary quantum me-

chanics. In matrix notation it reads

H~ui− εiS~ui = 0

If the basis set Uk(r) is taken to be orthonormal, i.e. if S(k, l) =
∫

U∗k (r)Ul(r) dr = δk,l

this general eigenvalue problem becomes an ordinary eigenvalue problem

∑
l

H(k, l)ui(l)− εiui(k) = 0

or in matrix notation

H~ui− εi~ui = 0

In the case of a density functional or Hartree Fock calculation the equations are identical

except that one has to replace the Hamiltonian matrix either by the Kohn-Sham matrix or

the Fock matrix

HKS
i, j =

∫
Ui(r)H

KSU j(r)dr ; Fi, j =
∫

Ui(r)F U j(r)dr
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Gaussian basis sets
In the chemistry community the most popular basis set are atom centered Gaussian type

orbitals (GTOs). On each atom i with position Ri several Gaussian like functions of form

G(r−Ri)

are centered. In the following discussion of the nomenclature of these orbitals G we will

assume for simplicity that Ri = 0

• Primitive Gaussian type orbitals:

If the radial part is just a single Gaussian specified by the exponent α it is called a

primitive Gaussian. The angular part can can either be given by spherical harmon-

ics. i.e

G(r) = Yl,m(θ,φ)exp
(
−α(x2 + y2 + z2)

)

or by cartesian coordinates in which case

G(r) = xl1 yl2 zl3 exp
(
−α(x2 + y2 + z2)

)

The quality of the basis depends on how many Gaussians with different exponents

are used for each atomic shell of the atom on which they are centered.
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• Minimal basis sets:

If only one exponent is used the basis set is called minimal basis set. For hydrogen

one consequently has only one basis function per atom, for the first row atoms one

has two s type functions describing the 1s and 2s electrons and one set of px, py, pz

functions describing the 2p electrons.

• Double Zeta basis sets:

In a double Zeta basis set the number of exponents is doubled with respect to the

minimal basis set. For first row atoms one has thus a 1s, 1s′, 2s, 2s′, 2px, 2px′, 2py,

2py′, 2pz and 2pz′ functions

• Triple Zeta basis sets:

The number of exponents is three times that of the minimal basis set.

• Polarization basis functions:

Gaussians that have angular momenta higher than the occupied atomic shells (i.e. d

type functions for first row atoms) are called polarization functions. In the context

of density functional calculations polarization functions are important if there are

complicated bonding geometries. Let’s for instance consider first the CH4 molecule.

The bonds that the carbon atoms form with the 4 hydrogens are formed from the

sp3 hybridized atomic orbitals. These 4 orbitals are just simple linear combinations
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of s and p type functions

1

2
(s+ px + py + pz)

1

2
(s+ px− py− pz)

1

2
(s− px + py− pz)

1

2
(s− px− py + pz)

Let us now imagine that one hydrogen is replaced by a fluorine which has a higher

electronegativity than hydrogen. As a consequence the entire electronic charge of

the molecule will be pulled towards the fluorine and all the bond angles will be

distorted. To describe such distorted bond angles higher angular momenta are nec-

essary.

A large number of polarization functions is required for correlated wavefunction

methods (CI, CC etc) in order to describe the angular correlation on each atom.

• Diffuse basis functions:

Diffuse functions are Gaussians that have a small exponent and that are therefore

fairly delocalized. Diffuse functions are necessary if one has a charged system with
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an extra electron or if one wants to calculate properties that depend on the tail of

the wavefunction such as the polarizability.

• Contracted Gaussian type orbitals:

Gaussians are in principle quite terrible functions for describing atomic wavefunc-

tions. They have the wrong behaviour both at the origin and far away from the

origin. The true atomic wavefunction is similar to an exponential times a spherical

harmonic. At the origin it therefore has a cusp whereas the Gaussian does not. Far

away the Gaussian is decaying much faster than the exponential. The reason why

Gaussian are nevertheless widely used is that all the integrals can easily and effi-

ciently be evaluated. Using a linear combination of a few Gaussians, it is however

possible to obtain a wavefunction that is rather similar to an atomic wavefunction

and for which the integrals are still simple to evaluate. If such a linear combination

is used as a basis function, it is called a contracted Gaussian. The contraction is al-

ways over radial Gaussians with several exponents that all share the same spherical

harmonics.

G(r) = Yl,m(θ,φ)∑
k

ck exp
(
−αk(x

2 + y2 + z2)
)

Depending on how many contracted Gaussian G are used to describe each shell one

calls such contracted basis sets again single , double or triple zeta basis sets.

• Split valence basis sets:
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Using a double or triple zeta contracted basis set is wasteful. The core electrons

are chemically inert and do not change if one puts an atom into different chemical

environments. Therefore one single contracted Gaussian is enough to describe it

if the contraction contains a sufficient number of terms. The part of the valence

function that is in the core region is also rigid since it has to be orthogonal to the

core wave-function. It can therefore also be described by a single contracted Gaus-

sian. What varies significantly in different chemical environments is the part of the

valence function in the valence region. Split valence basis sets take this fact into

account and give more flexibility to the valence wavefunction in the valence region

than in the core region.
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The Radial wavefunctions of carbon multiplied by r
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Split valence basis sets are among the best Gaussian basis sets and the most widely

used are denoted by

– 3-21G: The core orbital is a contraction of 3 primitive Gaussians, the core part

of the valence is a contraction of 2 primitive Gaussians and the valence part is

a single primitive Gaussian

– 6-31G: The core orbital is a contraction of 6 primitive Gaussians, the core part

of the valence is a contraction of 3 primitive Gaussians and the valence part is

a single primitive Gaussian

– 6-311G: The core orbital is a contraction of 6 primitive Gaussians, the core

part of the valence is a contraction of 3 primitive Gaussians and the valence

part consists of two primitive Gaussian

Diffuse and polarization Gaussians can be added to these split valence basis sets.

• Correlation consistent basis sets:

In correlated wavefunction methods the basis set has to describe both angular and

radial correlation effects. It does not make sense to describe for instance radial cor-

relation with high accuracy by including Gaussians of high angular momentum l

while neglecting radial correlation by including only a few different radial Gaus-

sians for the various angular momenta taken into account. Correlation consistent

basis sets are balanced in their description of radial and angular correlation.
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Numerical atomic orbitals (NAO’s)
As in the case of Gaussian basis set, each atom carries a certain number of basis function,

but in the case of NAO they are the numerical solution of a free atom. To form a basis

set both the orbitals that are occupied and unoccupied in the free atom have to be used.

Since in chemical bonding the atomic wavefunction are only relatively weakly modified,

such a basis set allows us to obtain accurate results with basis sets of moderate size.

Another advantage over the Gaussian basis sets is that the NAO’s decribe correctly both

the electron-nucleon cusp of the wavefunction as well as the exponential assymptotic

decay for large radii. While the orbitals on a single atom are by construction orthogonal,

orbitals centered on different atoms are not orthogonal to each other. Hence numerical

instabilities due to the overcompleteness will also occur as one goes to very large basis

set sizes. Like for Gaussians, basis set superposition errors also exist. However practice

shows that both of these problems are less severe for NAO’s than for Gaussians. The

only minor disadvantage compared to Gaussians is that some integrals such as the kinetic

energy can not be calculated analytically.
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Problems of atomic basis sets

• With a systematic basis set one can approach the true (density functional) energy

and wavefunction with arbitrarily small error if the basis set is sufficiently big.

Atomic basis sets such as Gaussians are not systematic basis sets.

• With atomic basis sets one encounters so-called basis set superposition errors. They

are due to the fact that the basis set for one specific atom becomes better if there are

other atoms close by whose basis function cover also the region of the atom under

consideration and act thus as additional basis functions. As a consequence binding

energies are generally too large in such calculation.

• The Hellmann-Feynman theorem does not hold anymore for incomplete atom cen-

tered basis functions. In addition to the Hellmann-Feynman force so-called Pulay

forces arise. Even though they are difficult to calculate they are implemented in

most Gaussian type electronic structure codes.

0-144



Plane wave basis sets

Plane waves are the natural basis set for electronic structure calculations in periodic crys-

tals. Bloch’s theorem tells us that the wavefunction of the j-th band at the Brioullin

wavevector k can be written as

ψk, j(r) = exp(Ik · r)
(

∑
K

Ck, j(K)exp(IK · r)
)

The expansion coefficients CK, j of the part that is periodic with respect to the Bravais

lattice cell (part within the large brackets) satisfy the Schrödinger equation

1

2
(k+K)2Ck, j(K)+∑

K′
VK−K′Ck, j(K) = ε j(k)Ck, j(K) (120)

where VK is a Fourier component of the Kohn-Sham potential. In the above equation there

is no overlap matrix since plane waves form an orthogonal basis set.

Since a plane wave extends over the whole computational volume, plane wave basis sets

do not allow for an adaptive resolution. This would be necessary in an all electron calcu-

lation, i.e. in a calculation where one includes both the chemically relevant valence elec-

trons and the background core electrons. The core regions would require an huge overall

resolution that would render plane wave electronic structure calculations hopelessly slow.
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For this reason pseudopotentials are used in all plane wave calculations. A pseudopoten-

tial describes some pseudoatom whose core electrons are eliminated but whose valence

electrons have the same chemical properties as the valence atoms of the true atom. Even

with pseudopotentials the number of plane waves is still significant (of the order of a few

hundred per atom), but since plane waves can be handled numerically very efficiently,

they give rise to quite fast electronic structure codes. Obviously the kinetic energy part

is diagonal in plane waves and therefore trivial to handle. The potential energy part is a

convolution that can easily be handled by Fast Fourier Transformation (FFT) techniques.

Even though the use of pseudopotentials is mainly a numerical necessity, it also has a

physical advantage. Relativistic effects can easily be incorporated into a non-relativistic

electronic structure calculation through relativistic pseudopotentials. This is due to the

fact that only the core electrons feel strong relativistic effects.
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The figure below shows the all-electron and pseudo valence orbitals of carbon. Outside

the covalent radius the all-electron and pseudo valence orbitals have to coincide in order to

describe correctly the rearrangements of the the wavefunctions during chemical bonding.

In the chemically inert core region they may however differ. In contrast to the all-electron

2s function the pseudo 2s function has no node and is therefore ’softer’, i.e requires a

smaller number of plane waves to represent it.
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Wavelet basis sets
Wavelets are a new type of mathematical functions that were introduced some 20 years

ago. Because of their unique properties, they have found widespread use in many areas

ranging from image compression to predictions of the solar cycle. Wavelets are also a

promising basis set for Schrödingers equation. Wavelets

• are localized both in real and in Fourier space

• allow for adaptivity, i.e.

close to the nuclei the

resolution is higher

• are a systematic basis set
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The zoo of wavelet families

The notion of wavelet does not refer to a specific function but to a large class of various

functions. One can classify wavelets into orthogonal, bi-orthogonal and multi-wavelet

types. Within each class there exist various families. Each family is characterized by

2 fundamental functions, the scaling function and the wavelet. Within a family there

are sub-families of different degrees. Any orthogonal (sub-)family is characterized by 2

fundamental functions, the scaling function φ and the wavelet ψ. We will first discuss the

simplest wavelet family, the Haar wavelet, and then go on to more complicated and more

powerful wavelet families such as Daubechies wavelets. A wavelet basis set is generated

by translations and dilatations of the 2 fundamental functions.

φk
j(x) ∝ φ(2kx− j)

ψk
j(x) ∝ ψ(2kx− j)

The index j indicates the localization in time (space), whereas the index k the localization

in frequency (Fourier space). Infinite resolution is obtained in the limit k→ ∞
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The Haar wavelet family

The Haar wavelet ψ and scaling function φ on resolution level 0 are shown below

φ ψ 

1 0

1 

0

Let us now assume that we have a piecewise constant function in the interval between 0

and 1 which consists of 16 equidistant plateaus. Hence it can be expressed exactly by a

linear combination of scaling functions at resolution level 4. The expansion coefficients

s4
i are just the values of the plateaus.

 0   1x 

φ4 

f =
16

∑
i=0

s4
i φ4

i (x) ; s4
i = f (i/16) (121)
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The figure below shows the fundamental transformation between scaling functions and

wavelets on different resolution levels. A scaling function on resolution level k is a linear

combination of a scaling function and a wavelet on a lower resolution level k−1,

1/2 

+ 1/2 

= 

0 1

0
1

0
level  k 

1

φ

φ

ψ

1/2 

= 

0 1

0
1

0 1

φ

ψ

φ

- 1/2 

level  k-1 

level  k-1 

φk
2i(x) =

1

2
φk−1

i (x)+
1

2
ψk−1

i (x) (122)

φk
2i+1(x) =

1

2
φk−1

i (x)− 1

2
ψk−1

i (x) (123)

The two above relations 122,123 can be used to determine the matrix elements of the

matrix T which transforms the scaling function and wavelet expansion coefficients from
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level k−1, sk−1
i and dk−1

i , to scaling function coefficients sk
2i and sk

2i+1 at level k:

(
sk

2i

sk
2i+1

)

=

(
T1,1 T1,2

T2,1 T2,2

)(
sk−1

i

dk−1
i

)

since they give rise to the two conditions

(
1

0

)

=

(
T1,1 T1,2

T2,1 T2,2

)(
1/2

1/2

)

;

(
0

1

)

=

(
T1,1 T1,2

T2,1 T2,2

)(
1/2

−1/2

)

The result is

T =

(
1 1

1 −1

)

which gives rise to the following backward transformation rule

sk+1
2i = sk

i +dk
i ; sk+1

2i+1 = sk
i −dk

i (124)

The transformation rule can be inverted to obtain the forward transformation rule

sk−1
i =

1

2
sk

2i +
1

2
sk

2i+1 ; dk−1
i =

1

2
sk

2i−
1

2
sk

2i+1 (125)
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After one forward transformation step (Eq. 125), the function from Eq. 121, is represented

in an equivalent way by scaling functions and wavelets on resolution level 3.

f =
8

∑
i=1

s3
i φ2

i (x)+
8

∑
i=1

d3
i ψ3

i (x) (126)

The (blue) scaling function only part is a smoothed version of the original function and

is shown below. The (red) wavelet part represents the rapidly varying difference between

the orginal and smoothed function.

 0

3 

  1x 

φ

The scaling functions on resolution level 3 of Eq. 126 can now be decomposed recursively

into scaling functions and wavelets on even higher resolution levels until only one scaling

function is left. This single scaling function then represents only the average value of the

function and is thus similar to the zeroth Fourier component in a plane wave representa-

tion.
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The resulting representation is called the wavelet representation of the function.

f = s0
1φ0

1(x)+d0
1ψ0

1(x)+
2

∑
i=1

d1
i ψ1

i (x)+
4

∑
i=1

d2
i ψ2

i (x)+
8

∑
i=1

d3
i ψ3

i (x) (127)

The basis functions from the above equation are sketched in the same colors below.
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To go back from the wavelet representation (Eq. 127) to the original scaling function

representation (Eq. 121) the backward transformation (Eq. 124) can be applied.

As described above the scaling function representation (Eq. 121) and the wavelet repre-

sentation (Eq. 127) have the same number of expansion coefficients, namely 16 in our

example. On a computer the storage requirements would thus be identical. However if the

function varies more rapidly in one region than in another one the wavelet respresentation

is advantageous. The function shown on top of equation 121 is for instance constant in the

last 3 intervals. Hence the last 4 expansion coeffients are constant, s4
16 = s4

15 = s4
14 = s4

13,

but this does however not eliminate the need to store them. In a wavelet representation,on

the other hand, the coefficients d3
8 and d3

8 are zero and consequently it is not necessary to

store them. 14 coefficients are thus only required instead of 16 and the wavelet represen-

tation is more compact. This lead to the concept of adaptivity in a wavelet representation.

High resolution wavelet coefficients are only needed in regions where the function varies

rapidly. In slowly varying regions one knows from the beginning that these coefficient are

zero (or at least very small) and hence the need not be stored.
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Daubechies wavelets

Daubechies wavelets are orthogonal wavelets. They are higher order generalizations of

the discontinuous Haar wavelet. It was for a long time deemed impossible to construct

a set of continuous functions that have compact support and are orthogonal. As such

the construction of the Daubechies wavelets was a major breakthrough in mathematics.

The mathematical theory of Daubechies wavelets is fairly complicated and will not be

explained in this course. Below is shown the 8-th order Daubechies family. Even though

it looks kind of ugly, it can be shown that a linear combination of Daubechies scaling

functions can exactly represent polynomials up to a certain order.

-4 -2 0 2 4

’scfunction’
’wavelet’
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Daubechies wavelets are used as a basis set in the BigDFT electronic structure code.

Since pseudopotentials are used, the very rapidly varying core electron wavefunctions are

eliminated. Hence there is no need for a large degree of adaptivity and only 2 resolution

levels are used. The high resolution region is chosen to coincide with the region where

bonding takes place. The low resolution region describes the region where the tails of the

wavefunctions decay slowly towards zero. The situation is shown below for a cluster of

silicon atoms shown as green spheres. The red grid points carry both scaling functions

and wavelets and cover therefore the high resolution region, the brown grid points carry

only scaling functions and cover therefore the low resolution region.
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Tight binding methods
In order to illustrate the concept of tight binding scheme let’s focus onto a specific material

for which many tight binding schemes exist, namely silicon. In tight binding schemes the

cores electrons are eliminated as they are in a pseudopotential scheme. Hence we are left

with 4 valence electrons that are distributed among the 3s and 3px, 3py and 3pz orbitals. In

a pseudopotential calculation with a minimal basis set we would thus need 4 orbitals per

atom. If the electronic structure calculation is done in the selfconsistent diagonalization

scheme we have to diagonalize in each step of the selfconsistency iteration a Hamiltonian

matrix of dimension 4Nat times 4Nat , where Nat is the number of silicon atoms. Assuming

that our silicon structure is a closed shell system, we have to calculate the lowest 2Nat

eigenvalues and eigenvectors of this matrix. Once selfconsistency has been reached the

total energy of the system can be obtained from the eigenvalues εi of the Kohn-Sham

matrix and the charge density by the following formula which corresponds to Eq.75 of the

HF method

E = 2

N/2

∑
i=1

εi +
∫

ELDA
xc (ρ(r))− vLDA

xc (ρ(r))ρ(r)dr (128)

− 1

2

∫ ∫
ρ(r)ρ(r′)
|r− r′| drdr′+ ∑

i< j≤Nat

ZiZ j

|Ri−R j|

Empirical Tight binding schemes now give some simple rules that allow to approximately
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predict the matrix elements of the Hamiltonian without calculating them explicitly from

some set of orbitals and the selfconsistent potential. From the eigenvalues εTB
i of this

tight binding Hamiltonian HT B we can then obtain the first term of the DFT total energy

expression of Eq. 128. The additional terms of Eq. 128 are in most tight binding schemes

replaced by a short-range pairwise potential P. This is justified since the exchange cor-

relation terms are short range and since the long range Hartree terms in the second line

of Eq. 128 cancel if the total charge density is a superposition of well localized atomic

charge denities. Hence the tight binding energy expression is

E = 2

N/2

∑
i=1

εTB
i + ∑

i< j≤Nat

P(|Ri−R j|) (129)

In empirical tight binding schemes one never sets up an explicit basis set. It is therefore

not possible to calculate a wavefunction or charge density in real space. As a consequence

the tight binding energy expression of Eq. 129 depends only the eigenvalues and not on

the eigenvectors of the Hamiltonian.

Let us now discuss in more detail the rules for setting up HT B. In this discussion we will

assume that there exists some basis set that consists of localized orbitals that are products

of spherical harmonics and radial functions. We however never have to specify the explicit

form of the radial functions. In addition we will assume that this basis set is orthogonal.

Denoting a basis function centered on atom i with angular momenta l,m by Bi,l,m we
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would have to solve the integral

HT B
i,l,m ; i′ ,l′,m′ =

∫
Bi,l,m(r)

(−1

2
∇2 +V (r)

)

Bi′,l′,m′(r)dr (130)

To effectuate the integration one goes into a cylindrical coordinate system where the z axis

connects the two atoms. For the kinetic energy part the integration over the known angular

part (given by real spherical harmonics) can be done analytically. For the potential energy

part this integration over the angular part can only be done analytically if the so-called

two-center approximation is adopted. In this approximation one assumes that the total

potential V (r) can be decomposed into a sum of radially symmetric atom centered atomic

potentials

V (r) =
Nat

∑
j=1

v j(|r−R j|)

In the calculation of HT B
i,l,m;i′ ,l′,m′ one then neglects all the terms j that are not equal to

either i or i′. The final result for angular integration part of Eq. 130 is given by the so-

called Slater-Koster rules. For a system where the atom centered basis functions have

only s and p character the Slater-Koster rules state that all the integrals can be expressed

by 4 quantities Vs,s,σ, Vs,p,σ, Vp,p,σ and Vp,p,π illustrated below. In addition they give simple

formulas for expressing arbitrary integrals, where the p orbitals are not necessarily parallel

or perpendicular to the axis connecting the atomic centers, in terms of these 4 quantities.
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Basic types of integrals in the Slater Koster formalism for s and p orbitals. The integrals

are classified according to the two participating orbitals and according to the angular

momentum with respect to the axis. σ indicates m = 0 and π indicates m = 1. The positive

lobe of the p orbitals is shown by a solid line and the negative lobe by a dashed line.

What is left unspecified by the Slater-Koster rules is the dependence of these 4 quantities

on the distance between atom i and i′. In empirical tight binding schemes this dependence

is found by fitting to known theoretical or experimental data. The form of the function

P in Eq. 129 is found by fitting as well. The quantities Vs,s,σ, Vs,p,σ, Vp,p,σ and Vp,p,π

generally tend rapidly to zero with increasing distance between two atoms. The resulting

Hamiltonian matrix is therefore sparse.

Tight binding is the fastest and crudest quantum mechanical method. It is faster than a

DFT calculation in a minimal basis set because
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• The tight binding matrix HT B can be calculated much faster than the Kohn-Sham

matrix. This is due to the fact that the matrix is sparse and to the fact that calcu-

lating a matrix element by an integration over 3-dim space is much more expensive

than deriving it from the Slater-Koster rules together with the fitted radial integral

dependence.

• It is not necessary to do a selfconsistency iteration and the result is thus obtained

after a single diagonalization.

The speed has of course its price. The accuracy of empirical tight binding schemes is less

than the accuracy of DFT schemes. In addition tight binding schemes are only available

for a few technically important materials. For these materials tight binding schemes are

frequently the only way to do quantum mechanical calculations on large systems. The

figure below shows the equilibrium geometry of a silicon cluster obtained with a tight

binding scheme (blue spheres) and superimposed the DFT result (green spheres). The

structures are qualitatively similar even though they are quantitively different.
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In addition to the orthogonal empirical tight binding scheme outlined up to now there are

still the following other tight binding schemes.

• Non-orthogonal tight binding schemes: The tight binding eigenvalues are obtained

from a generalized eigenvalue problem. The overlap matrix is set up with rules sim-

ilar to the rules for the Hamiltonian matrix in a orthogonal tight binding scheme.

The fact that there exist two matrices allows for more flexibility in the fitting proce-

dure.

• Selfconsistent tight binding schemes: These schemes give some simple rules for the

charge transfer in a system and account for the resulting electrostatic repulsion or

attraction in an approximative way. They are however numerically more expensive

since a selfconsistency iteration has to be done.
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Variational Quantum Monte Carlo

The variational Quantum Monte Carlo method solves in principle the many body Schrödinger

equation exactly. The method is conceptually simple. One writes down a functional form

for the wave-function that contains several variational parameters. Based on the vari-

ational principle one then finds the set of parameters that minimizes the energy. The

difficult numerical problem is how to evaluate the energy expectation value. Since it is

given by a high-dimensional integral it can only be calculated by Monte Carlo integra-

tion with importance sampling. We will illustrate the variational Quantum Monte Carlo

method for the calculation of the singlet state of the H2 molecule. A two electron singlet

wave-function has the following form.

Ψ(x1,x2) = Φ(r1,r2)(α(s1)β(s2)−α(s2)β(s1))

Since the spin part is antisymmetric, the spatial part Φ(r1,r2) has to be symmetric, i.e.

Φ(r1,r2) = Φ(r2,r1). Φ satisfies the 2-particle Schrödinger equation

H 2elΨ(r1,r2) = EΨ(r1,r2) (131)

For 2 nuclei at RA and RB the Hamiltonian is

H 2el =−1

2
∇2

1−
1

2
∇2

2 +
1

|r1− r2|
− 1

|r1−RA|
− 1

|r1−RB|
− 1

|r2−RA|
− 1

|r2−RB|
(132)
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An usual ansatz for a variational Quantum Monte Carlo wave-function is a product of a

part that contains only single particle orbitals and a part that contains a so-called Jastrow

factor. With a good ansatz one can get energies E that are very close to the exact eigenval-

ues of Eq. 131. The Jastrow factor depends on inter-electronic coordinates and represents

in this way correlation effects among the electrons. In particular the Jastrow factor has to

be chosen such that it satisfies the electron-electron cusp condition. When two electrons

come very close the potential energy goes to infinity. Since the eigenvalue is constant

and finite throughout space, the kinetic energy has to go to minus infinity. This leads

to a discontinuity of the first derivative when r1 = r2. If an ansatz for a wave-function

is chosen that does not satisfy the cusp condition the exploding of the potential energy

leads to numerical difficulties. To derive this cusp condition let us introduce a new set of

coordinates

R = (r1 + r2)/2

d = r1− r2

The kinetic energy of Eq. 131 then becomes

−1

4
∇2

R−∇2
d

Let us now consider the case where both electrons are very close to each other but not

very close to the nucleus. In this regime the wave-function will essentially only depend

0-165



on d and the Schrödinger equation (Eq. 131) locally takes on the form

(

−∇2
d +

1

|d|

)

Ψ = EΨ

This is the well known hydrogenic one particle Schrödinger equation for a repulsive

Coulomb potential with Z = 1/2. It has therefore locally the solution

exp(Z|d|) = exp(|d|/2)

Such a wave-function satisfies the cusp condition

1

Ψ

∂Ψ

∂d

∣
∣
∣
∣
d=0

=
1

2
(133)

The above Eq. 133 is called the electron-electron cusp condition for anti-parallel electrons.

It is satisfied by any exact wave-function and should be satisfied by any approximate

Monte Carlo wave-function for reasons of numerical stability.

The energy expectation value < E > (that is a function of the variational parameters in

the wave-function Φ)

< E >=

∫
Φ(r1,r2)H

2elΦ(r1,r2)dx1dx2∫
Φ(x1,x2)Φ(x1,x2)dx1dx2

(134)
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is calculated using Monte Carlo integration with importance sampling. Importance sam-

pling is here essential since the wave-function is vanishingly small in most parts of space.

In order to do the importance sampling we define a local energy EL

EL(r1,r2) =
H 2elΦ(r1,r2)

Φ(r1,r2)
(135)

This local energy would be a constant if Φ(r1,r2) was the exact wave-function. Since this

is in general not the case EL(r1,r2) varies in space, but its variation is smaller the better

Φ(r1,r2) is. In terms of the local energy the energy expectation value of Eq. 134 becomes

< E >=

∫
EL(r1,r2)|Φ(r1,r2)|2dr1dr2∫ |Φ(r1,r2)|2dr1dr2

Using the Metropolis algorithm we can generate a sequence of configurations r1,r2 dis-

tributed according to

|Φ(r1,r2)|2∫ |Φ(r1,r2)|2dr1dr2
(136)

The energy expectation value then becomes a simple sum

< E >=
1

T

T

∑
t=1

EL(r1(t),r2(t))
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Even though Variational Quantum Monte Carlo is exact in principle, it is not possible in

practice to come very close to the exact wavefunction. The reason for this is that the min-

imization problem becomes too difficult for a large number m of variational parameters

because the wavefunction depends on these parameters in a complicated non-quadratic

form. For this reason Variational Quantum Monte Carlo is typically the first part of a

Quantum Monte Carlo calculation. The second part is a diffusion Monte Carlo simulation

that is based on the results of the Variational Quantum Monte Carlo simulation.
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Diffusion Quantum Monte Carlo

Diffusion Quantum Monte Carlo is based on the relation between Schrödingers equation

and the diffusion equation. For the 1-dim case the diffusion equation for a quantity ρ
(which is not an electronic charge density) is given by

∂ρ

∂t
=

1

2

∂2ρ(x, t)

∂x2
+(ET −V (x))ρ(x) (137)

The first term on the right hand side is the ordinary diffusion term arising from Fick’s law,

the second is a growth/decay term that does, in contrast to the first one, not conserve the

norm of the quantity ρ. When a stationary state is reached, i.e. when
∂ρ
∂t

= 0, ρ satisfies

the (in this case 1-dim) Schrödinger equation.

−1

2

∂2ρ(x, t)

∂x2
+V (x)ρ(x) = ET ρ(x)

Thus one can obtain the solution of Schrödinger’s equation by simulating a diffusion pro-

cess until it has reached equilibrium. Note that the existence of a stationary state with a

finite norm requires a particular value of ET . If ET is too large the quantity ρ will grow

exponentially, if it is too small, it will decay to zero.
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The short time step propagator for the diffusion equation (Eq. 137) is known analytically.

G(x,y;∆t) =
1√

2π∆t
e−(x−y)2/(2∆t)e−∆t(V (y)−ET ) (138)

This propagator gives a quadratic time propagation error

ρ(x, t +∆t) =
∫

dy ρ(y, t)G(x,y;∆t)+O(∆t2)

This short time propagator can be simulated by a random walk involving several walkers,

i.e configurations representing the distribution ρ as follows:

• Initialize a population of walkers.

• Move these walkers according to the Gaussian distribution

1√
2π∆t

e−(x−y)2/(2∆t)

from the initial configuration y to the new configuration x. This move represents

pure diffusion. The term q = e−∆t(V (y)−ET ) in Eq. 138 represents a so-called branch-

ing process that gives rise to the birth or death of walkers. It is simulated as follows:

If q is less than 1 the walker dies with a probability of 1−q. If q is greater than 1 the
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walker gives birth to either [q− 1] or [q] new walkers, where [ ] represents integer

truncation of the argument. The probability for having [q] new walkers is given by

q− [q] and [q−1] new walkers will come into existence with complementary proba-

bility 1+[q]−q. Equivalently, one can say that the new number of walkers is given

by [q+ r], where r is a random number. If [q+ r] is greater than one, [q+ r]− 1

walkers are born, otherwise the walker dies.

During this diffusion/branching process one monitors the population of the walkers. If

it grows ET is reduced, otherwise it is increased until one finds a value of ET where the

population remains stable. This value is the eigenvalue of the Schrödinger equation.

In the limit of an infinitesimal small time-step, Diffusion Quantum Monte Carlo is an

exact method for bosonic ground states. Problems arise for fermionic systems. The dif-

fusion equation (Eq. 137) assumes that ρ is a positive quantity. A fermionic many body

wavefunction has however nodes where its sign changes. It is thus not everywhere posi-

tive. As a consequence one has to introduce the so-called fixed node approximation. The

nodes of the wavefunction are assumed to be known before one starts the simulation. In

most cases the nodes of a variational Quantum Monte Carlo wavefunction are used. Two

different diffusion Quantum Monte Carlo simulations are then done in the sub-volume

where the wavefunction is positive and where it is negative. Moves where walkers want

to cross from one sub-volume to the other are always rejected. It is clear that the result of

a diffusion Quantum Monte Carlo simulation can only be as good as the nodes that were
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used as the input. Since the nodes obtained from variational Quantum Monte Carlo are

usually quite good diffusion Quantum Monte Carlo gives very accurate answers.
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Overview over some electronic structure codes

1 Gaussian

• The most widely used package in chemistry oriented fields

• Uses an Gaussian basis set (choosing the right basis set is a black art)

• Can do both DFT as well as wavefunction based methods as well as other things

(semiempirical methods, ...)

• All-electron calculations for light elements, pseudopotential calculations for heavy

elements.

• Does not perform very well on massively parallel computers

• Commercial

0-173



2 VASP

• The most widely used package in solid state type applications

• Uses a plane wave basis set

• Can perform calculations with various exchange correlation functionals, but heavily

focused on the PBE functional

• Has high quality PBE pseudopotentials for most elements of the periodic table

• Performs well on parallel computers

• Commercial
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3 FHI-aims

• Uses as basis set atomic orbitals

• Significantly higher accuracy for a given basis set size than for a Gaussian basis set

• Full all-electron calculations also for heavy atoms, approximate relativistic methods

available

• Commercial
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4 BigDFT

• Uses wavelets as basis functions

• Can perform density functional calculation with LDA and GGA (Generalized Gra-

dient Approximation) functionals

• Is targeted towards structure prediction calculations

• Free software
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5 Standard output quantities of electronic structure codes

• Energy

• Forces and higher derivates of the energy with respect to the atomic positions such

as the Hessian matrix

• MD trajectories, geometry optimizations, vibrational frequencies and vibrational

modes

• Electronic charge densities and related quantities such as dipoles and quadrupoles

• Ionization energies and electron affinities

• Information about the insulating/metallic character of the system

• Response properties such as electron-phonon coupling that allows to estimate criti-

cal temperatures for superconductivity
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