Computational Physics WS 2025

Stefan.Goedecker@unibas.ch

0-0

Contents

1 Organization 0-6
2 Motivating the use of computers in physics 0-11
2.1 Computers are changing ourdaily life 0-11
2.2 Computers are changing the way scienceisdone 0-12
2.3 100-fache Zunahme der CPU hours fiir wissenschaftliche Simulationen
proDecade 0-13
2.4 Ingredients of the virtual chemistry/physics laboratory 0-14
2.5 Scaling behavior of algorithms 0-15
2.6 Fast algorithms are among the main achievements of modern mathematics 0-16
2.7 Two sorting algorithms 0-17
2.8 Computational Physicsand theory 0-24
2.9 Computational Physics and experiment 0-25
2.10 Modern Computers e e 0-26
2.11 How are computers used in science, 0-27
3 Computer arithmetic 0-30
3.1 Binary representation of integers in Fortranand C 0-30
3.2 Binary representation of integers in Python 0-34

0-1

4

5

3.3 Floating pointnumbers
34 Rounding e
3.5 Cancellation e

Numerical differentiation

Minimization Methods

5.1 Minimizing a continuous 1-dim function
5.2 Minimizing continuous many-dimensional functions
5.3 Convergence of the steepest descent iteration
5.4 Convergence of the preconditioned steepest descent iteration
5.5 Steepest descent with line minimization
5.6 Steepest descent with energy feedback
5.7 Steepest descent with gradient feedback
5.8 The conjugate gradient (CG) method
5.9 The Newton method revisited
5.10 Quasi Newton (QN)methods
5.11 The DIIS (Direct Inversion in Iterative Subspace) minimization method
5.12 Comparison of Minimization Methods

0-2

6 Atomistic simulations and molecular dynamics 0-93

6.1 Structure determination 0-97
6.2 Vibrational properties 0-104
6.3 Moleculardynamics. 0-109
6.4 Boundary conditions 0-112
6.5 Time propagation algorithmsforMD 0-115
6.6 Calculating the short range forces from a force field 0-121
6.7 Longrangeforces 0-129
6.8 Calculating the temperature in a MD simulation 0-131
6.9 Calculating the pressure in a MD simulation 0-134
6.10 Calculating the diffusion coefficients in a MD simulation 0-144
6.11 Green-Kubo formulas 0-148
6.12 Entropies and freeenergies 0-149
7 Treatment of electrostatic and gravitational long range potentials 0-162
7.1 The Barnes Hut algorithm 0-163
7.2 The fast multipole method 0-169
7.3 Analytical methods for the solution of Poisson’s equation 0-178
7.4 Plane wave techniques 0-180
7.5 Ewaldtechniques 0-181
7.6 Particle-Particle Particle-Mesh (P°M) methods 0-187

0-3

7.7 Multigrid for the solution of Poisson’s equation 0-188

7.8 Solution of Poisson’s equation in spherical coordinates 0-206
7.9 Standard non-recursive and recursive interpolation. 0-207
7.10 Solution of Poisson’s equation using interpolating scaling functions . . . 0-208
8 Integration methods 0-217
8.1 1-dim Integration Methods 0-217
8.2 High Dimensional Integration Methods 0-231
9 Monte Carlo methods 0-238
9.1 The Metropolis algorithm 0-240
10 Numerical solution of the single particle Schrodinger equation 0-258
10.1 Discretization of the single particle Schrodinger equation 0-260
10.2 The variational principle 0-262
10.3 Numerical utilization of the variational principle 0-264
10.4 Independent particle methods: Density Functional Theory 0-266
10.5 The hydrogenatom 0-276
11 Global geometry optimization 0-295
I11.1 Simulated annealing 0-298

11.2 Basin hopping . .
11.3 Minima hopping .

11.4 Genetic algorithms

0-5

1 Organization

e Lecture with script: http://comphys.unibas.ch/teaching.htm

e Exercises and projects

— ’Small’ exercises accompanying each lecture: Traditional analytic problems
and simple numerical problems (on your own laptop?)

— Solve 2 ’large’ projects out of 6 being offered
Development of a short program to solve a simple physical problem. Can
be done at any time by the student either at home or in the physics institute.
Programming help can be given to Fortran and Python Programmers.

0-6

Credit points:

4 credit points for doing the small exercises and passing an oral examination on the
course

e 2 additional credit points for the successful solution of the 2 projects.

0-7

Outline of the course

Linux or Mac operating system

Python programming (tutorial?)

Computer arithmetic

Numerical differentiation

Minimization algorithms

Atomistic simulations and Molecular dynamics (MD)

— Inter-atomic potentials

— Structure determination

— Vibrational properties

— Basic Molecular Dynamics algorithms

— Boundary conditions

0-8

e Electrostatic and gravitational forces

— Barnes Hut algorithm

— Fast multipole algorithm

— Fourier methods

— Ewald and particle mesh methods

— Multigrid methods
e Statistical mechanics

— Random numbers
— Calculations of thermodynamic properties from MD simulations
— Monte Carlo simulations

— Global minimization and structure prediction
e Quantum mechanics

— Numerical solution of the time-independent single particle Schrodinger equa-
tion

— Density functional methods

0-9

e Numerical integration methods

— One-dimensional integrals

— High-dimensional integrals

0-10

2 Motivating the use of computers in physics

2.1 Computers are changing our daily life

e email

Internet

(on-line) data banks

tele-working

electronic control systems in cars: ABS, ESP

0-11

2.2 Computers are changing the way science is done

”0ld” science

Ceovenman>

”New”’ science

Covenmar>

S ——
COMPUTER SCIENCE

0-12

2.3 100-fache Zunahme der CPU hours fiir wissenschaftliche Simu-
lationen pro Decade

Performance Development

10 EFlop/s
1 EFlopls o L.
100 PFlop/s L ik
10 PFlop/s L, -
1 PFlop/s > ki e

A -
100 TFlop/s F o . -

Performance
%
&
"

10 TFlop/s .."" . -
*
1 TFlop/s * . "
100 GFlop/s
10 GFlop/s =]
1 GFlop/s a*

100 MFlop/s
1990 1995 2000 2005 2010 2015 2020 2025

Lists

—8— Sum —— #1 —=— #500

0-13

2.4 Ingredients of the virtual chemistry/physics laboratory

* Models of the physical reality, e.g. density functional theory for the description of
interacting electronic systems or elasticity theory for the description of macroscopic
bodies

e Algorithms that allow us to solve the fundamental equations of these models nu-
merically

* Fast computers

 Efficient implementations of the algorithms on modern computers

0-14

2.5 Scaling behavior of algorithms
Tcpy = cNY (1)

N is some measure of the size of the system to be simulated
e vlarge: High complexity algorithm, bad scaling
e vsmall: Low complexity algorithm, favorable scaling

Ultimate goal: linear scaling, Tcpy = ¢cN

TCPU

~— Crossover point

S

N

In the presence of very powerful computers, bad scaling 1s the most serious limitation in
numerical simulations

0-15

2.6 Fast algorithms are among the main achievements of modern
mathematics

Fast Fourier Transform: Frequency analysis with O(N log(N)) operations;
N = number of data points

Multi-grid method: Solution of elliptic PDE’s with O(N) operations;
N = the number of grid points

Fast Wavelet transformation: Multi-resolution analysis with O(N) operations ;
N = number of data points

Merge Sort: Sorting N data items with O(N log(N)) operations

0-16

2.7 Two sorting algorithms

Ordinary Sorting :
The subroutine below sorts an array A into ascending order:
A(l) <A@2) <... <AN-1) < A(N)

SUBROUTINE slowsort (N, ARR)
DIMENSION ARR (N)

DO J=2,N
A=ARR (J)
DO I=J-1,1,-1
IF (ARR(I) <= A) GOTO 10
ARR (T+1)=ARR (1)
ENDDO
=0
10 ARR (I+1)=A
ENDDO

END

The scaling is quadratic: Tepy o< N 2

0-17

Merge Sort: Tcpy o< Nlog,(N)

1. Any consecutive pair of entries is ordered

2. All consecutive pairs of ordered segments of length 2 are merged into ordered seg-
ments of length 4

3. All consecutive pairs of ordered segments of length 4 are merged into ordered seg-
ments of length 8

4. The remaining two ordered segments of length 8 are merged into the final ordered
result

Exercise [Spt]: Write a subroutine that implements the merge sort algorithm

0-18

PROJECT: Sorting continously growing data sets

Background

The merge sort algorithm allows to sort a given data set in an efficient way. Frequently
the data set is however not constant in time, but increasing continously. For instance
new participants have to be added continously in an alphabetically ordered telephon book.
Using the merge sort repeatedly after adding one or a few new items to the data set would
be 1nefficient. In this project a method will be introduced, which allows us to maintain
continously growing data sets with moderate effort.

We consider a large one dimensional array (a) of numbers which are stored in increasing
order, that is a(n) > a(n—1) > ...a(3) > a(2) > a(1) . Here n is the length of the array
and is in the order of 100k. For simplicity we can assume that the numbers are in the
interval [0:1] which means that they can be generated by a simple call to a random number
generator (call random_number(r) in Fortran; import random ; num = random.random()
in Python). Now we want to insert an element (which is a random number) into this
array. According to the value of this new element, it has to inserted in the k" position.
This position can be found efficiently with at most O(log(n)) operations using bisection.
Then we have to increase the length of our final array to n+ 1 and shift all elements of
the old array having the positions > k. This operation becomes very expensive when n
1s very large because memory access is typically more expensive on modern computers
than numerical operations. We will try to find a different way to do this operation more

0-19

efficiently.

Tasks

e Write a bisection routine that will find in an ordered array the correct position for
inserting a new element. Take as the first search interval the whole array. In each
consecutive step the length of interval which contains the correct position is cut into
half until the insert position is found.

» We will now convert the large one dimensional data array a(n) into which data have
to be inserted to a two dimensional array b(m,[) as shown in Figure below, where
the shaded region represents non zero values of the array The value of m and [has
to be chosen such that m x [> n , that is, we will have space for more elements in
this two dimensional array than in our original one dimensional array.

0-20

1 a(1)

A
a(l) | a(5)
a(2) | a(6)
] a(3) a(n-1)
k |a(k) a(4) a(n)
Here are the steps to be-thken
n Ja(n S —— L, Y

1. Choose the number of columns(m) and rows(/) of the two dimensional array.

2. Store the elements in two dimensional array such that each column contains
same number of elements. While storing the elements also store the number
of elements in column i in an array ncolelements(i) and also the maximum
value of the element in valindex(i).

3. Now if we want to insert an element in our original array we will first find out
in which column it belongs to using the value stored in valindex(:).

4. Once we know to which column it belongs we will insert it into that column
at the right array position so that the increasing order in preserved. In addition
we also update the array ncolelements(:) containing the number of elements

0-21

in each column and possibly also valindex(i). In the figure below, the shaded
region represents old values of the array and red are the new inserted values

MR

n

0-22

5. If one column gets filled up in this process, then go to the first step and redis-
tribute again.

e Test the method carefully. Write a routine which reconverts the two dimensional
array into an one dimensional array and check whether the one dimensional data
are correctly ordered at any stage of the continous insertion process.

e Compare the performance of this more sophisticated algorithm with the perfor-
mance of the trivial method where the insert position is found in a one-dimensional
array by bisection and then all the elements beyond the insertion point are shifted.
Examine the influence of the size of the data set and of the choice of the side lengths
of the two dimensional array on the performance.

0-23

2.8 Computational Physics and theory

The basic equations of physics are in general too complicated to be solved by analytical
methods. In many cases they can however be solved by numerical methods. Examples:

e Newton’s equations of motion can be solved analytically for a system of at most
two spherical bodies. No analytic solution is available if one wants to describe for
instance the entire solar system with the sun and all its planets. Numerically this
can however easily be done.

e The only system found in nature for which the Schrodinger equation can be solved
is the hydrogen atom. If one wants to solve this equation even for the simplest
molecule, one has to use numerical methods.

* The electrostatic potential can be calculated analytically for simple charge distribu-
tions such as point charges, charged lines etc as every student knows from numerous
exercises of this type. For realistic and more complicated charge distributions, such
as the charge distributions found in a semiconductor device one has again to resort
to numerical methods.

e Simulation based on physical laws is also an essential ingredient in engineering. To
obtain a stable and save body of a car, computer simulations are just as essential as
for the design of the wing of an airplane.

0-24

2.9 Computational Physics and experiment

Experiments have several limitations

e Experimental results are usually not the findings of direct observations but of in-
terpreted observations. These assumptions on which the interpretations were based
may be wrong or inaccurate. In computer simulations on the contrary, most quanti-
ties are directly accessible. One can for instance exactly know the atomic positions
of the atoms in a chemical reaction when it 1s studied with a molecular dynamics
simulation.

e Simulations can be done for systems under extreme conditions (e.g. very high tem-
perature or very high pressure) that can not be handled by any experimental equip-
ment.

e If an answer to a physical problem can both be obtained by simulation and by ex-
periment, simulation is frequently cheaper.

0-25

2.10 Modern Computers

e Single core: A few Gigaflops/sec (10° flops/sec) of peak performance
Example: a single core has a peak of around 12 Gflops/sec : Clocked at 3 GHz, 4
floating point operations per cycle

e Multi core processor

e GPU: up to 100 Tflops (10'? flops/sec) with some 20’000 cores

e Parallel computers: Distributed memory computers: Up to a few thousand nodes
(typically with GPU accelerator) connected by a fast network. Programming on
such a machine is very different from the programming of a serial machine since
one has to tell each processor individually what to do.

Increased parallelism is the driving force for further performance gains: Swiss National
Supercomputer 2025: Exa flop = 10'® floating point operations per second

0-26

2.11 How are computers used in science

Number crunching: Numerical calculations using floating point numbers

Symbolic computer algebra (Mathematica, Maple)

Data banks (scientific journals and data)

Electronic communication (email, downloading of programs over the Internet, etc)

0-27

Numerical calculations are frequently done on grids

function f(x,y) on a two-dimensional grid: functional values on grid points are stored in
an array

-
-
~——__-
- - =T
. - ——
7 ~—_
—_—— P
~ -
- -

-~ s
- -
—_ - Z -
>~ i - 77—~ I
_ —-——_ - > _ ==l - 2
=~ Te—a - T > -—
v . . 15
- Pid - - -~ — ~
- = - -
T——_ - > -
-~ - e < -~
~l /// - > - P = O 5
2 g Iy ~~--c T~ et
- >= > -
- - —
15 Pral - L - - 0
. - < A -
- ><
1 et e 0.5
0.5 . - -
0 TT-—< 1

orid spacing: h = .5 S} | s

Is the performance of modern computers sufficient

Taking into account the impressive speed of modern computers, one might think that
enough performance is available to solve any computational problem in little time. This is
actually not true. There are numerous important problems that would require a computer
speed that is several orders of magnitude larger than what we have nowadays. To see
how the present computational power can easily be used up, let us consider some typical
computational problem. We want to follow the time evolution of a three-dimensional
system over a certain time period. The time dependent solution of the three-dimensional
system will be specified on a numerical grid with let’s say at least 100 grid points along
each direction. There are thus 10° real space grid points. Let us assume that we need 1000
time steps. Hence 10” values need to be computed during the simulation. Assuming that
the algorithm has linear scaling and that the calculation of each value requires 100 floating
point operations we will need 10!! operations to perform the simulation. This would take
roughly 10 seconds on a single core of a modern workstation. However our assumptions
are highly optimistic. In most cases the scaling will not be linear and prefactors can be
much larger. Hence there are numerous problems that can not even be solved on large
parallel computers nowadays.

0-29

3 Computer arithmetic

Traditional mathematics distinguishes between integers, rational and irrational numbers.
Computer arithmetic is very different. It does not have rational and irrational numbers.
Both are approximated by floating point numbers. And even though computer arithmetic
has integers, they have different properties than the integers known from traditional math-
ematics. These differences are due to the fact that all kinds of numbers have a binary
representation on a computer, i.e they are represented by a finite length sequence of bits.
A bit can take on the values of 0 and 1.

3.1 Binary representation of integers in Fortran and C

Typically integers are stored using a 32-bit word. The most obvious way would be to use
one bit for the sign and the remaining 31 bits for the absolute value. The standard integer
representation is however a different one. It is called signed integers via 2’s complement.
In this convention a nonnegative integer k in the range 0 < k < 23! — 1 is stored as the
binary representation of k, but a negative integer —/, where 1 <[< 231 s stored as the
binary representation of the positive integer 2°> — [.

Examples

(00000000 00000000 00000000 00000000), = 0

0-30

00000000 00000000 00000000 00000001),
00000000 00000000 00000000 00000010),
00000000 00000000 00000000 00000011),
00000000 00000000 00000000 00000100),
00000000 00000000 00000000 00000101),
00000000 00000000 0000000001000111),
ITI111111 11111111 11111111 10111001),
OITITITIT 111111 11111111 11111111),
(10000000 00000000 00000000 00000000),

AN N N N N /N N /N

since the leftmost bit, called the overflow bit, is discarded.

0-31

It can easily be verified that the representations of 71 and -71 add up to zero

(00000000 00000000 00000000 01000111),
+(111111 1111111111 1111111110111001);
= (100000000 00000000 00000000 00000000),

The basic operations with integers are additions/subtractions and multiplications. Since
the result 1s again an integer it does have a binary machine representation unless it 1is

too big in absolute value to be represented by the available 32 bits. Such an event is
called an overflow. Modern computers, that respect the IEEE (Institute of Electric and
Electronic Engineers) standard, do not print an error message upon overflow, unless the
program is compiled with special flags. Instead they will assign a wrong integer result to
the operation. The programmer has thus to ensure that no overflow will occur. Divisions
are also allowed between integers. If the result is a representable integer, such a division
will deliver the expected result. If the result is not an integer, the resulting rational number
will be rounded to the integer part if the result is positive and to minus the integer part of
the absolute value if the result is negative. This rounding is also called rounding towards
zero. An useful intrinsic function that is acting on integers is the modulus function.

Declaration and use of integers in Fortran

Since the two types of numbers available on a computer, integers and floating point num-
bers, behave very differently, the programmer has to declare to which type each variable
belongs. A sample program is shown below.

0-32

program 1ntegers
implicit none
integer(4) :: i1,12,13,k
integer(4) :: 1a(4),1b(4)

11=8-2 ; 12=3*5 ; 13=3**3
write(*,*) ’1l1,12,13=",11,12,13

i1=8/2 ; 12=12/3
write(*,*) '11,12=",11,12

il=modulo (10, 3) ; i2=modulo(-10, 3)
write(*,*) ’'il,1i2=",11,12

do k=1,4
ia(k)=2/k ; ib(k)=-2/k
enddo
write(*,’ (a,4(x,13))'")"1a=",1a
write(*," (a,4(x,13))")"ib=",1ib

end program

0-33

3.2 Binary representation of integers in Python

Integers in Python can be of any size but if the integers are in the range [—2°" : 239] the
calculations are faster. Variables are typically not declared explicitly as being integers or
floating point numbers. The interpreter decides instead what type is reasonable.

n=1

for 1 in range(20000) :
n=n*2
if 1%1000==0:

print (i, n)

The type of numerical constants is specified by the absence/presence of the decimal point.

n=1.0
for i in range(20000):
n=n*2
if 1%1000==0:
print (1,n)
n=1
for i in range(20000) :
n=n*2.
if 1%1000==0:

print (1,n)

0-34

Integers beyond the 32 bit limit are however rarely useful since they can for instance not
be an input to most other intrinsic functions.

import numpy as np

n=1

for i in range(10000):
n=n*2
y=np.logl0O (float (n))
if 1%1000==0:

print (i, n)

Also the address space is limited to 23! — 1 for the 32 bit case and 2% — 1for the 32 bit
case.

import numpy as np

n=33
a_array=np.zeros (2**n)

0-35

Variables (myint, myfloat) can be forced to be of integer or floating point type with the
int(myint) and float(myfloat) function. The type(myvariab) function can return the type
of myvariab. However output variables of an elementary operation can be of a different
type than the input variables. The output of a standard division is for instance always a
floating point number. There is however a second division operation // that behaves like
the ordinary division in Fortran. A floating point number can be transformed back into
a ratio, but the result is not necessarily identical to the ratio that was used to obtain the
floating point number.

x=1/3
print (x)

y=xX.as_1integer_ratio()
print (y)

x=1int (1) /int (3)
print (x)

x=1//3
print (x)

0-36

3.3 Floating point numbers

Floating point representation is based on scientific (exponential) notation. In base 10 a
real number x 1s written as

x =+ x 10% (2)

S is called the significand and the integer E the exponent. For computer arithmetic base 2
is used instead of base ten and hence

x=4+Sx2F where 1< S<?2 (3)
The binary expansion of the significand is
S = (bo.b1b2b3...bp_1)2, with by =1 (4)

A floating point number for which by = 1 1s called a normalized number. For normal-
ized numbers, it is not necessary to store the first bit bg. For instance the number 5.5 is

represented as

11
5.5:7:(1.011)2><22 (5)

A real number such as 1/3 or v/2 can not be represented exactly by an expansion of the
significand of finite length p.

0-37

For scientific computations double precision numbers are a de facto standard, since ordi-
nary single precision does not give sufficient precision. The IEEE double precision stan-
dard specifies 1 bit for the sign, 11 bits for the exponent and 52 bits for the significand. The
total storage requirement is thus 64 bits which equals 8 bytes. Out of the 11 bits for the ex-
ponent, one is lost for the sign and the largest exponent is thus 2'Y — 1 = 1023. The largest
normalized floating point number is thus approximately 2'924 ~ 1.8 x 103®. For technical
reasons the smallest possible exponent is not —1023, but —1022 which gives the smallest
normalized floating point number of 2710?22 ~ 2.2 x 10738, By allowing non-normalized
floating point numbers for the smallest possible exponent it is actually possible to repre-
sent even smaller floating point numbers down to 2710222752 = 2=1074 ~ 4 9 x 107324
If a result of a floating point operation produces a result outside the range of the small-
est and largest floating point number a floating point exception occurs. For a result that
becomes too large in magnitude, the IEEE standard has introduced the notation plus or
minus ’Infinity’. If it gets too small in magnitude it 1s set to zero. A floating point ex-
ception also occurs if one executes a mathematically forbidden operation, such as diving
by zero or taking the square root of a negative number. According to the IEEE standard
such a result should be denoted by ’NaN’, which stands for ’Not a Number’. Unfortu-
nately many computer manufacturers do not observe the IEEE floating point exception
standards. While a Fortran code, compiled without debugging flags, continues to run after
encountering a floating point exception, producing in most cases meaningless results, the
Python interpretoer will stop with an error message.

0-38

Floating point exceptions in Fortran

program floating_point
implicit none

integer :: 1

real (8) :: x,x1i,Xxr,y

x=1/5 ; y=1.d0/5.d0
write (*,*) X,y

x=2.d0
do 1=1,5

x=x-1.d0

xi=1.d0/x ; xr=sqrt (x)

write(*,*) ’'1i,x,xi,xr ',1,Xx,x1,Xr
enddo

x=2.d0**1020

do i=1, 20

x=x*2.d0 ; write(*,*) x
enddo

x=2.d0** (-1060)

do i=1, 20

x=x/2.d0 ; write(*,*) x
enddo

end program

0-39

3.4 Rounding

Unless overflow occurs, the sum or the product of two machine integers is again am exact
machine integer. This does not hold true for floating point numbers. Their sum or product
will in general require more than the number of bits used to represent the two input num-
bers. Hence any floating point operation has to be followed by a rounding operation. For
this reason floating point arithmetic is never exact arithmetic. Floating point numbers have
the property that the distance between two neighboring numbers 1s approximately propor-
tional to their magnitude. Hence rounding to the closest floating point number introduces
a relative error that is roughly constant. The gap between a floating point number x and
the next larger floating point number that is larger in magnitude is called ulp(x), where
ulp stands for Unit in the Last Place. ulp(1) is called the machine epsilon. The machine
epsilon thus gives the smallest number that will produce a result different from 1 when
added to 1.

To visualize the properties of the floating point number system, let us introduce a toy float-
ing point number system, where the significand has only 3 bits and where the exponent
can take on only the values -1,0,1. We will assume normalized numbers such that by = 1.

+(bg.b1bs)y x 2F (6)

0-40

For £ = 1 the possible floating point numbers are
(10.0) =2 ; (10.1),=2.5 ; (11.0),=3 ; (11.1),=3.5

for they are

and for £ = —1 they are
(.100),=.5 ; (.101),=.625 ; (.110),=.75 ; (.111), =.875

In addition there is the unnormalized floating point number zero (0.00),

For the toy system it is easy to see that ulp(1.) = 1/4. For a general binary floating point
number ulp(1.) = (%)p ! Where p 1s defined in Eq. 4. The distance between the first
floating point number below 1. and 1. is 1/8. In the general case it is (%)p . It follows that

the fractional error ”lﬁ <|x) introduced by rounding is in the interval

@) =)

For the IEEE double precision floating point system where p = 53 we thus get

ul p(x)

o <22x10716 (8)

1.1x10710 <

We can thus expect that due to rounding a single floating point operation will give a result
with an accuracy of nearly 16 decimal places. Since one 1s doing typically millions of
floating point operations the error between the exact arithmetic result and the floating point
arithmetic result can grow larger, but for a stable problem it should not grow dramatically.
Empirically it turns out that in stable large scale calculations one can expect an accuracy
of 11 to 13 digits.

Because of the rounding error it does usually not make sense to print out the results
of floating point operations with more than 15 digits. There is however one exception,

0-42

namely if one wants to restart a program with exactly the same values that the program
used when it stopped. In this case we have to make sure that a conversion from binary
to decimal and back returns the original binary floating point number. The requirement
is that the decimal floating point system has to be at any point at least two times denser
than the original binary floating point system. The best resolution we can expect from the

.. . 133 ..
IEEE double precision standard 1s % . Hence we have the condition that

1\ 1/1\>
(ﬁ) <z(z))

where q is the number of decimal places in the decimal system. The smallest integer
value of ¢ satisfying this condition is g = 17. What can go wrong if we do not double the
resolution 1s shown in the figure below. So we have to write all numbers with 17 decimal
places into a restart file if we want to be sure that we get back our initial binary floating

point number.
k) __________ ---------- ————— > Base 2

S A A K I R > Base 10

0-43

3.5 Cancellation

Relative precision is lost in floating point arithmetic when two numbers are subtracted.
This loss 1s worst if the two numbers to be subtracted are similar in magnitude. The
phenomenon of cancellation is not only found in binary floating point numbers but also
in decimal floating point numbers. Since we are more familiar with the decimal system,
cancellation will be demonstrated for a decimal system with 8 decimal places. This means
that we have an relative error of 10~°. Let us now assume that we want to subtract the two
floating point numbers x and y where

x =0.12345678

y = 0.12345578

The result 1s obviously z =x—y =0.00000100 = .1e — 5. Even though z 1s again a floating
number with a potential relative accuracy of 107 it has in reality a much lower accuracy,
namely a relative accuracy of 10~*. In order to get z with 8 significant decimal places,
it would be necessary to have a representation of x and y with 13 decimal places. For
instance with

x = 0.1234567800009
y = 0.1234557800000
we obtain z = 0.0000010000009 = .10000009.e — 5

0-44

Catastrophic Cancellation

Various instances can be encountered where floating point arithmetic gives wrong results.
An experienced programmer can usually detect such problems and eliminate them. As an
example let us look at the expression

vV 1.d0—x—-1.d0 (10)

and let us assume that x is very small, i.e. x = 1.d —20. Since x is smaller than the
machine epsilon 1.d0 — x will be equal to 1.d0 and v/1.d0 —x — 1.d0 = 0. The true result
is approximately —.5d — 20 which can easily be represented by a floating point number.
We have thus a relative error in our result that 1s of the order of one. In this case the
problem can be avoided by multiplying numerator and denominator by v/1.d0 —x+ 1.d0

ST 5 1.d0 (v1.d0—x—1.d0)(v/1.d0 —x+ 1.d0) —x
d)—x—1.d0 = _
V1.d0—x+ 1.d0 V1.d0—x+1.d0

Exercise [1pt]: Calculate v/1.d0O—x—1.d0forx=1.d—2,1.d—4,1.d—6,1.d—8,1.d—
10,1.d —12,1.d — 14,1.d — 16,1.d — 18 in both ways and compare the results. Which
result is more reliable?

(1D

0-45

Exercise [1pt]: Can it be taken for granted that in floating point arithmetic

(x+y)—x=y

1.d0/(1.d0/y) =y
Hint: Consider the toy system with x = .875, 1/.875 = 1.14286, 1/1.25 = .8

(y/x)xx=y

Hint: Consider the toy system withx =1.5, y=1.75, 1.75/1.5 = 1.166667, 1.25%1.5
= 1.875

xk(Y+27) =xxy+x%z

In order to transfer the results of the toy system to real floating point arithmetic, write
a computer program. To make sure that the results of any operation are rounded before
they are used for the next operation, write intermediate results into variables and compile
without any optimization.

0-46

4 Numerical differentiation

In mathematics the first derivative of a function f(x) is defined as

) = tim LEFR I 1) | g .

and the second derivative as

f//(x):}lli_%f(x+h)—2];l(2x)+f(x—h) :f(x+h)—2f;l(2x)+f(x_h)_I_O(h2) (13)

The formulas tell us that if we want to have an accurate result we have to choose A suffi-
ciently small. For example if we want to calculate both derivatives with 10 decimal places
h should be of order of 1.d-10 for the first derivative and of the order of 1.d-5 for the sec-
ond derivative. Unfortunately this accuracy can not be obtained numerically because of
catastrophic cancellation effects. The error of both derivatives of the exponential function
evaluated at x = 1.d0 as a function of & 1s shown below

0-47

| | — 1 . T

- 1st deriv + 1

le+15 -

1le+10 -

S 100000 | 4

o -]

I L

++ ++++
+
i . ++++++ 1
1e-05 T et 7
ty +
+ %_+_#++
N N N N | N N | N N N | N
1le-20 le-15 le-10 1le-05 1
h

Using the above derivative formulas it is not possible to calculate derivatives with high
accuracy. If higher accuracy is required one has to use derivative formulas with a much
higher accuracy which is of the order of O(h!®). In this way one should obtain for a
h~1.d —1 an accuracy of 1.d-16, i.e. machine precision. Due to cancellation effects we
will perhaps loose one digit and end up with a numerical accuracy of 1.d-15

0-48

Derivation of finite difference formulas for derivatives

Finite difference formulas that approximate derivatives of continuous and differentiable
functions are based on the fact that such a function can locally be approximated with
arbitrary accuracy by a polynomial. Let us first rederive Equations 12 and 13.

For Eqn. 12 we find a linear function that goes through the points (xg,yo) and (x; =
xo+ h,y1). It is easy to see that this polynomial is given by

X1 —X X — X0

= 14
P1(x) = yo——+y1— (14)
The derivative of this polynomial is given by
1 I yi—yo —1 1
/ = — — —_ = = _— — 15
p1(x) Yoty P Yo -ty (15)

0-49

which is identical to Eq. 12. A polynomial that goes through the points (x_1,y_1), (x0,Y0)
and (x1,y) is given by

(xo —x)(x1 —x) (x1 —x)(x—x_1) (x—x0)(x—x_1)

—y_ 16

p2(x) =y-1 T Y0 3 Y1 T (16)
The first and second derivative of the polynomial evaluated at x = xg is given by
/ Y1 —YV-1 —1 1
= =y |— - 17
1 —2 1
4

P> (x0) ZY—1ﬁ+YOﬁ +y1h—2 (18)

The above equation is identical to Eq. 13. The principle for constructing higher order finite
difference formulas is simple. One has to fit higher order polynomials to the function f for
which one wants to calculate the derivative and then calculate analytically the derivative
for this polynomial. For even degree polynomials the resulting finite difference formula
will be a weighted sum of m functional values to the right and m functional values to the
left of the point xy at which one wants to calculate the /-th derivative.

m C;
1O (x0) = pay(xo) = Y viry (19)

I=—m

0-50

where we have suppressed in our notation the fact that the set of coefficients ¢; differs for
different /.

The problem is that it is very cumbersome to derive by hand the coefficients ¢; in Eq. 19
for large m or [. Here symbolic computation can come to our help. The following Mathe-
matica program finds the 16-th degree polynomial pi¢(x) that goes through 17 points of a
function, differentiates it and evaluates it at xg:

f[x_]:=Evaluate[InterpolatingPolynomial[{{-8,ym8}, {-7,ym7},{-6,ym6},
{_5/ym5}/{_4/ym4}/{_3/ym3}/{_Zrymz}/{_l/yml}/{oryo}/{llypl}r
{2,yp2}, {3, yp3}, {4,ypd}, {5, ypd}, {6,yp6}, {7,yp7},{8,yp8}},x]]
ff=Simplify[ReplaceAll [D[f[x],x],{x —> 0}]]

The output one obtains is the following:

Out [4]= (-640640 yml + 224224 ym2 - 81536 ym3 + 25480 ymd - 6272 ym5 +
> 1120 ym6 — 128 ym7 + 7 ym8 + 640640 ypl — 224224 yp2 + 81536 yp3 -
> 25480 yp4 + 6272 yp5 - 1120 yp6 + 128 yp7 - 7 yp8) / 720720

Lets now come back to our old problem of calculating numerically the derivative of the
exponential function with very large precision at x = 1.d0. Using the finite difference

0-51

formula Eq. 19 with the above coefficients c¢; calculated with Mathematica, one can indeed
calculate the derivative with 15 correct decimals for h ~ 1.d — 1.

Exercise [2pt]: Write a short computer program to calculate the first derivative of the
exponential function with high accuracy using the coefficients c; given in Table 1.

Using an analysis based on Taylor expansions we get the finally the following formulas
for the error:

const W™~ 1*1 if [is odd

D () — pW
77 (x0) = Pay (o)) <{ const 2"+ if [is even 0

The plot on the next page numerically demonstrates the above error formula for the case
where m = 2.

0-52

error

! o | 'D ! | Hl L | T
1st dex x O ﬁﬁ
X
0.01 F 3rd der X*x Yo ﬁﬁ
ﬁ +
| 4th der . o N
x] ﬁﬁ +
0.0001 | o n
. x B8
XX Dgﬁﬁ +
* >K>K X +
1e-06 | x %K +
+
+
+
1e-08 N
+
+
le-10 | -
+ +++ "
+ +
le-12 - P, x s
+ o+ + 4
1e_14 ! ' | 1 ' | 1 ' | 1 ' 1 | 1
le-06 1le-05 0.0001 0.001 0.01 0.1

h

0-53

Table 1: The coefficients c¢; for calculating first and second derivatives for different values
of m according to Eq. 19. The coefficients for negative i follow from the symmetry c_; =

—c; for the first and c¢_; = ¢; for the second derivative.
m Co C1 (o) c3 C4 Cs Ce Cc7 Cg
1 0 172
2 0 23 | -1/12
3 0 314 | -3/20 1/60
4 0 4/5 -1/5 4/105 -1/280
5 0 5/6 | -5/21 5/84 -5/504 1/1260
6 0 6/7 | -15/56 5/63 -1/56 1/385 -1/5544
7 0 78 | -7/24 7172 -7/264 7/1320 -7/10296 | 1/24024
8 0 8/9 | -14/45 | 56/495 ~7/198 56/6435 -2/1287 8/45045 | -1/102960
1 2 1
2 512 43 | -1/12
3 -49/18 32 | -3/20 1/90
4 -205/72 8/5 -1/5 8/315 -1/560
5 -5269/1800 53 | -521 5/126 -5/1008 1/3150
6 -5369/1800 12/7 | -15/56 | 10/189 1/112 2/1925 -1/16632
7 -266681/88200 74 | -7/24 7/108 -7/528 7/3300 -7/30888 | 1/84084
8 || -1077749/352800 | 16/9 | -14/45 | 112/1485 | -7/396 | 112/32175 | -2/3861 | 16/315315 | -1/411840

0-54

This figure shows the error for all the 8 sets of differentiation coefficients for the first
derivative in the table on the previous page. The lowest order formula (red plus sign) has
the smallest slope, whereas the highest order formulas with m=7 (black points) m=8 (red
triangels) have the largest slope and allow us to reach 1.e-15, which is close to machine
precision.

1 T T T I I . +.
i +++ |
0.01 Lt _
+ X
i +
++ X[
0.0001 Lt _
+ *g
+ X]
le'06 — ++++ »] ._
o +++ X O A
t 1e'08 — ++ ¥ -
o + 0 e
- +++ X
le-10 §++ x U A
& ‘g‘g X O L
le-12 - h !g_ggg_g! ; 0w s -
%&g agﬁg E
1e'14 — % i@ o Qe —
i 0%
le-16 : — P R P N R -
1le-06 le-05 0.0001 0.001 0.01 0.1 1

h

0-55

Exercise [2pt]: Prove the statement about the symmetry properties of the differentiation
coefficients, i.e show that c_; = (—1)'c; for the Ith derivative.

Hint: Without restriction, we can consider the origin as the point xo where the derivative
has to be calculated. Use the fact that

A IS CR VA9 @

Consider f to be a polynomial of low enough degree, such that it can exactly be differen-
tiated with the coefficients c;.

0-56

Partial derivatives of functions depending on several variables
The coefficients of finite difference formulas for mixed partial derivatives can easily be
obtained from the one-dimensional coefficients. Let us consider as an example the mixed

2
derivative aax—afy of a function f(x,y). We obtain

Y
dxdy dyox
8 . C;
X B_yzi:f(x_l_lh’y)E
Cl‘a

= Zﬁ@ (x+ih,y)

I

Z%Zf(x+ih,y+jh)%
l J

Q

CiCj

— ZZf(x+ih,y+jh) 72
i

where the coefficients ¢; belong to some set of Table 1.

0-57

5 Minimization Methods

5.1 Minimizing a continuous 1-dim function

Minimizing a smooth function is considerably easier than minimizing a non-smooth or
even discontinuous function. If the first derivative exists, its sign tells us whether we have
to move to the right or to the left to come closer to the minimum. The so-called steepest
descent iteration

X1 =x— o f(x)) (22)

will therefore converge to the minimum f(x37) of the function f if the step size « is
sufficiently small. If o 1s too large the iteration will diverge.

(x)

0-58

Next, we will discuss the case where the second derivative exists as well. Using in a
combined way the information on the first and second derivative gives the most efficient
minimization algorithms. The information about even higher derivatives is typically not
used since this would be too complicated. Consequently we can assume in our discussion
of minimization algorithms that we have to minimize a quadratic function. Then we can
do a Taylor expansion of the function f and its derivative around an arbitrary point X

) = FE+ @0 F @)+ 0P f 23)

ffx) = FE+E=3s" (24)

The stationary point x = x3; where the derivative vanishes can easily be obtained by solv-
ing Eq. 24.

xy =5~ f(®)/f" (25)

We assume it is a minimum (i.e. f” > 0) and not a maximum. Eq. 25 gives rise to the
Newton iteration

X1 =x— f (x0)/ " (26)

The iteration of Eq. 26 will obviously converge in a single step for a quadratic function,
but several iterations are needed for a general function. In the case of a quadratic function
we did not have to worry where to evaluate the second derivative since it was a constant.

0-59

This 1s of course not any more true for a general function. As a matter of fact we see that
for the one-dimensional case we are discussing, Eq. 22 and Eq. 26 are identical if we put
o = 1/f". Therefore one best adopts for the one-dimensional case the point of view that
we just do steepest descent iterations where o is of the order of 1/ f”, but small enough to
ensure convergence. In this case we do not have to answer the question where to evaluate
f”-

Exercise [1pt]: Minimize the function —exp(—xz) numerically using Eq. 22. For which
starting values does the iteration of Eq. 26 diverge if we evaluate " at x;

0-60

5.2 Minimizing continuous many-dimensional functions

The basic concepts of the 1-dimensional case can be carried over into the many dimen-
sional case. The first derivative has just to be replaced by the gradient which by definition
points in the direction of the strongest increase of the function. The opposite direction
consequently gives the strongest decrease of the function. Hence, the steepest descent
iteration becomes

X141 =X — o g(xp) (27)

where g(X) = Vf(X) is the gradient of the function f. As in the 1-dim case this will
converge to a minimum if o is sufficiently small.
For a function where the second derivatives exist we can again do a Taylor expansion

1) = f@+E-H 80+ 5 DT AE-D (28)

§¥ = X +AER-X) (29)

where A is the Hessian matrix

Ali,j) = axa(i) axa(j>f<f> (30)

For a quadratic form the Hessian matrix would not depend on the evaluation point, for a
general function it of course does and the problem where to evaluate it will be postponed.

0-61

Requiring g(¥) = 0 in Eq. 29 and solving for X while putting ¥; = X and X, | = ¥ leads to
the Newton iteration . . 1 —e L
Xj41 =X —A" g(X1) =X — Py (31)
Note that we have to solve in each iteration of the Newton method a linear system of
equations for the preconditioned gradient vector p

Ap=g (32)

There are several basic problems with the Newton iteration:
* As mentioned before, it is not clear where to evaluate it for a non-quadratic form

e Realistic functions are not quadratic forms and so the theory is anyway only an
approximation.

e The calculation of the exact Hessian matrix i1s numerically too expensive for com-
plicated high-dimensional functions

e Solving Equation. 32 is too expensive for high-dimensional functions.

Let us therefore define a slightly more general iteration that we will call preconditioned
steepest descent iteration

X141 =X —Pg(x) (33)

where P is a still unspecified preconditioning matrix. Evidently we get the steepest descent
iteration of Eq. 27 if we put P = ol and we get the Newton iteration of Eq. 31 if we put
P=A"1

0-62

5.3 Convergence of the steepest descent iteration

For the convergence analysis we will again assume that we are already sufficiently close to
the minimum, so that the function is a quadratic form. Because by definition the gradient
vanishes at x; the Taylor expansion of Eq. 28 becomes

1
ig—mﬂﬁuaqm) (34)

By shifting the origin (such that Xj; = 0) and the function (such that f(Xy;) = 0) we can
without any restriction consider the simpler case

1
ﬂﬂ:EﬂAf (35)
Since the Hessian A is a positive definite symmetric matrix, we can go into an coordinate
system Y, that is obtained by applying a unitary transformation U on the original coordi-

nate system ¥, where A becomes a positive real diagonal matrix D = U’ AU with diagonal
elements (eigenvalues) d (k).

FO) =3 LAk o gk =dE)y(E) 36)

0-63

Things are 1llustrated in the figure below. The ellipsoids represent the equipotential lines
of the function f. The axis of the y coordinate system coincide with the principal axis of
the ellipsoids.

Let us now assume that at a certain stage of a steepest descent iteration the current point X;
coincides with the blue dot. Since in this case the gradient points exactly in the direction
of the minimum, we can find the minimum of this one-dimensional subproblem with a
single steepest descent step if we chose oo = 1/d(1). If we are at the green dot the same
arguments apply except that now oo = 1/d(2). In general our current iterations points are
not located on any principle axis. The gradient of an arbitrary point such as the red dot
has components of both principal axis. In order to guarantee convergence we have to be
conservative and to choose ot = 1/max|d(1),d(2)]. Since the components of the gradient

0-64

that correspond to principal axes with small eigenvalues will be damped too strongly, a
steepest descent iteration in more than two dimensions is approaching the minimum very
slowly by a large number of zigzag moves.

The generalization to more than 2 dimensions is obvious. The o of a steepest descent
iteration has to be taken to be the reciprocal of the largest eigenvalue of the Hessian. Let us
now examine the convergence rate for the multi-dimensional case in a more mathematical
way. Since the steepest descent iteration is invariant under unitary transformations of the
coordinate system we can without restriction consider a diagonal Hessian.

Exercise [1pt]: Prove the above statement

The steepest descent iteration then becomes

Yi+1(k) = yi(k) — aud (k) y; (k) (37)

Hence

yiv1 (k) = yi (k) (1 — od(k))' (38)
where y; is the starting vector for the iteration. Convergence can only be obtained if
|1 —ad(k)| < 1 for all k. Hence a can be at most twice of the reciprocal of the largest

eigenvalue. So let us put
o =1/dmax (39)

where 7 is in between 0 and 2. For t = 1, the component k that will converge most slowly
1s the one associated to the smallest eigenvalue. Requiring this component to be equal to

0-65

a certain precision p gives
dmin

dmax

(1—t==) =p (40)

The number of iterations / necessary to obtain this precision p is then given by

dmin

[=1In(p)/In(1—1¢) (41)
dmax
If % is small, this is asymptotically equal to
dmax 111([?)
[=—1 = — K 42
n(p)g— t (42)

The ratio between the largest and the smallest eigenvalue of the Hessian matrix 1s called
the condition number K = %. We have thus the result that the number of iterations 1s
proportional to the condition number K in the steepest descent method. This is a big prob-
lem. As we will see the conditioning number is typically growing rapidly with respect to
the size of the physical system represented by the matrix. Hence the number of iterations
1s growing substantially as well.

0-66

5.4 Convergence of the preconditioned steepest descent iteration

The convergence analysis of the preconditioned steepest descent iteration of Eq. 33 is
analogous to the one for the simple steepest descent iteration. The only difference is that
we perform the analysis in a coordinate system that diagonalizes PA instead of A. The
number of iterations is consequently given by the same formula

dmax
[=—1 43
n(p) . (43)

the only difference being that d,,,,, and d,,;, are now the largest and smallest eigenvalues of
PA. If the conditioning number of PA is smaller than of A, the number of iterations of the
preconditioned steepest descent method will be reduced compared to the simple steepest
descent method. A good preconditioning matrix is a compromise between 2 requirements.
On the one hand it should give a small condition number, on the other hand it should be
easy to calculate and to apply to the gradient. A frequent choice for P is a diagonal or
sparse matrix.

Topology of preconditioned problem:

0-67

5.5 Steepest descent with line minimization

The prescription for a steepest descent iteration with line minimization for a function f is
formally i1dentical to an ordinary steepest descent minimization

X1 =X —0g (44)

The difference is that o is not fixed, but optimized such that

% (X+ag)=0 (45)
The line minimization ensures that the function will decrease at each iteration point. This
does however not imply that one comes as close as possible to the minimum. As a matter
of fact it turns out that with an optimal value of ¢ (Eq.39) the convergence is as fast
as with line minimization. In addition one iteration is much cheaper without the line
minimization. The conclusion is that one should avoid line minimizations unless one
can not at all estimate the largest eigenvalue of the Hessian matrix. If this estimation is
possible, steepest descent with some feedback is a recommendable strategy.

0-68

5.6 Steepest descent with energy feedback

A simple and powerful modification of the simple steepest descent method is the steepest
descent with energy feedback. Assuming that the functional value represents the energy,
we decrease the step size o if the energy rises in an iteration, otherwise we increase it.
Since we know that in the case of an energy increase the parameter ¢ (Eq.39) is roughly
twice as large as would be optimal for the elimination of the stiff components, associated
to large eigenvalues of the Hessian, we decrease o by a factor of 1/2. If the energy
goes down, as it should, we slightly increase o (e.g. by a factor of 1.05) to speed up the
convergence.

5.7 Steepest descent with gradient feedback

In practice one finds that the following feedback gives faster convergence than the energy
feedback. At each iteration one calculates the angle between the current gradient vector
and the gradient vector from the previous iteration. If the angle is larger than let’s say
60 degrees, the step size o is decreased by a factor of 1/2, otherwise it is increased by
1.05. In this way one avoids that consecutive gradients are pointing in opposite directions,
which is obviously not desirable for a fast convergence.

0-69

Exercise [4pt]: An Lennard-Jones cluster is some artificial system where the ’atoms’
interact through the Lennard-Jones potential. The potential energy E of such a cluster is

1 1
M (e “8)

izl,Nat]:1,l_1

Equilibrium geometries are given by minima of the potential energy. Minimize the energy
to find an equilibrium geometry using the steepest descent method with energy and gradi-
ent feedback. o will turn out to be of the order of 1.d-3. Stop the minimization if the gra-
dient norm is less than 1.e-5. Which method is more efficient? The subroutine LJ_calc.py
(contained in the exercise material file on http://comphys.unibas.ch/teaching.htm) can be
used to calculate the energy and forces (= negative gradient) of a Lennard-Jones cluster
and the file LI38.xyz contains the coordinates of the lowest energy cluster containing 38
atoms. Displace the atoms slightly from the geometry given in this file and use either
one of the above mentioned minimization methods. It can be assumed that the original
configuration is regained if the energy after minimization agrees with the initial energy.
If the atoms are strongly displaced one might however fall into another local minimum.
The format of the file LI38.xyz is such that it can be viewed with standard visualization
software such as V_Sim provided at https://gitlab.com/l_sim/v_sim or ovito. The first line
gives the number of atoms, the second is empty. The remaining lines give the x,y and z
coordinates of each ’atom’ followed by the atom type.

0-70

5.8 The conjugate gradient (CG) method

Eq. 29 tells us that finding the minimum of a quadratic form is equivalent to solving a
linear system. The (preconditioned) steepest descent method can therefore be considered
as the simplest iterative method for solving a linear system of equations. There are how-
ever more powerful methods. One of the most popular method is the conjugate gradient
method. It is based on a bi-orthogonal sequence g;, h;

g 8=) gik)gjk)=8;; (47)
k
hf Ahj =Y hi(k)A(k,D)h;(1) = & (48)
k.l

Solving the system of equations
AX =Yy (49)

which arises from zeroing the gradient of %)_C’TA)? — yI'X, is easy in the space spanned by
the h;’s. Writingx =1} ;c jﬁ ;j one obtains

Y cjAh; =5 (50)
j

0-71

Multiplying from the left by h; one obtains
ZCj;llTAflj = Cj :;llT)_; (51)
J

In implementations of the conjugate gradient method one is simultaneously generating
the bi-orthogonal sequence and then updating the approximate solution X. For a m dimen-
sional matrix there are at most m non-zero vectors 7zi. Therefore the exact solution has to
be found after at most m iterations. This property is sometimes stressed in mathematics
books. It 1s however not the property that makes conjugate gradient so useful in practice
because

e It only holds for linear systems, whereas in practice the conjugate gradient method
is usually applied for minimization problems where the function is not a quadratic
form.

e Even for linear systems, it is violated in finite precision arithmetic because of round-
Ing errors

e m iterations are far too expensive for large matrices

What makes the conjugate gradient method superior to the steepest descent method is its
faster convergence rate. It can be shown that the number of iterations / 1s

[o< VX (52)

0-72

instead of Eq. 42. For badly conditioned systems a lot can thus be gained by using the
conjugate gradient instead of the steepest descent method, for well conditioned (or pre-
conditioned) systems not much can be gained.

Generation of bi-orthogonal sequence

Here is the conjugate gradient formulation for the minimization of an arbitrary
function f. Given an initial input guess xy we calculate gy = V f(Xp) and put hg = go.
Consecutive steps [:

e Determine by a line minimization the o; that gives the lowest energy. That 1s usually
done by finding the point where the derivative vanishes.

%) S
8oclf(xl+ thi) (53)
e Update the solution
Xi+1 =X+ 0yhy (54)
e (Calculate new gradient
§i+1 =V f(¥+1) (55)

0-73

e Calculate new /i

B = Bie1 + YRy (56)
where (Polak Ribiere)
— = \T =
8l+1 —81) 8i+1
8] 81

For the case of a quadratic function one could simplify the Polak Ribiere formula by
using the orthogonality of the vectors g;. However it turns out that for a general function
where the orthogonality of the vectors g; is not any more satisfied, the above Polak Ribiere
formula is more stable.

0-74

5.9 The Newton method revisited

Even though the Newton method is not widely used for finding minima we will discuss
in more detail a variant that is also applicable if the Hessian has zero or very small eigen-
values. The same approach can be used in similar methods such as the preconditioned
steepest descent iteration. So let us assume that we know the Hessian matrix A(x) at a
point x together with the gradient g(x). We can diagonalize this Hessian matrix to obtain
its eigenvalues A; and eigenvectors v; using the routine from
https://mumpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html#numpy.linalg.eigh
The eigenvalues and the corresponding eigenvectors are in increasing order. For the mo-
ment we assume that all the eigenvalues are larger than zero. The case where some eigen-
values are zero will be discussed afterwards. We have now to transform the gradient in the
new coordinate system spanned by the orthogonal set of eigenvectors. For this we have to
calculate the coefficients g;

= (g|vi) Zg (58)

where g(j) is the j-th component of g and vl() the j-th component of v;. g; is the i-th
component of the gradient vector in the new coordinate system. Since we are now in the
principal axis coordinate system we can multiply each component by the ideal stepsize
which is the inverse curvature. Since the curvature is given by the eigenvalues we have

= gi/\i (59)

0-75

Then we have to go back in our original coordinate system to get the preconditioned
gradient §. The vector g is what one would obtain by applying A~! to g:

g=) &v (60)

Finally we update the atomic positions according to
R+ R-g (61)

So far nothing has been gained in comparison with a standard implementation of the
Newton method. However, these methods are frequently applied to geometry optimiza-
tions of molecules and solids where one has to find the atomic coordinates that minimize
the energy. Since the energy is invariant under translations, the Hessian matrix has three
eigenvectors with zero eigenvalues and is thus singular. Hence A~! does not exist. Numer-
ically the eigenvalues are not strictly zero but very small. These nearly zero eigenvalues
can lead to problems in Eq. 59. Unless the system (which can be a molecule or periodic
solid) 1s in the field of an external potential the overall translational force (negative gra-
dient) has to be zero and so the three components g(i) that correspond to the translations
have to be zero. Analytically we have thus three cases in Eq. 59 where zero is divided by
zero, in numerical work we will just divide two very small numbers. Since these numbers
are essentially rounding noise the result would be completely wrong. For a molecule at
equilibrium it can be shown that there are three more zero eigenvalues that correspond
to rotations. If the molecule 1s close to a local minimum the three eigenvalues are not

0-76

exactly zero but very small which will lead as well to numerical problems. To avoid such
problems we have to modify Eq. 59 to

Gi=5"
CMity

(62)

and this value of g(i) has then to be used in Eq. 60. 7y has to be chosen such that the
denominator is always positive and not too small. In the case of a molecule or cluster,
a good empirical choice for Y i1s to set it equal to half the value of the first non-zero
eigenvalue. In the case of a periodic solid this is the 4-th eigenvalue and in the case of a
molecule the 7-th eigenvalue.

The practical implementation of the preconditioned steepest descent iteration 1s very sim-
ilar to the Newton method. The main difference is that in the preconditioned steepest
descent method one uses an approximate Hessian instead of the exact Hessian. Approxi-
mate Hessians have in general also zero eigenvalues which have to be treated in a similar
manner as in the Newton method.

Exercise [3pt]: Use the Newton method to find equilibrium geometries of the 38 atom LJ
cluster of the previous exercise. Show that the convergence rate is much faster than with
the steepest descent method. A routine hessian_LJ.py that calculates the Hessian matrix is
available on http:/comphys.unibas.ch/teaching.htm. For the diagonalization use the rou-
tine available at

https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh. html#numpy.linalg.eigh

0-77

5.10 Quasi Newton (QN) methods

The basic principle of quasi Newton methods is to build up information about the Hessian
matrix from the gradient evaluations during the minimization iterations. This 1s possible
because the Hessian matrix (Eq. 30) can be obtained by finite differences from the forces
or gradients

_ Rihe)—g(R) . g(Rther)—gR) . . g(R+he,)—g(R
AR)= [= e}ll) g(R) . &l e}zl) gR) . . &l eh) g(R) (63)

Denoting by G; the finite difference vector between the two gradients

G; = g(R+he;) — g(R) we see that the matrix element A; ; is given by the scalar product
%(Gile i), where e; is an orthonormal set of vectors. Now very similar quantities are a
by-product of any gradient based minimization. If the system is moved in a minimization
step from R to R+ d and the forces are evaluated at both points we can calculate the
approximate curvature along the direction d;.

1 19 (G(d)|d)

[l aa E(R+od)|,_o = [dd) (g(R+od)|d)|,_o ~ i) (64)

where we have again denoted by G the difference between two gradient vectors: G(d)
g(R+d) —g(R). If we assume our function E to be a perfect quadratic form then G(d)

0-78

1s equal to Ad. The subspace Hessian matrix B with respect to an non-orthogonal set of
vectors d; 1s then given by

Bij = (di|Ald;) = (G(d;)|d;) (65)

The eigenvalues of the Hessian A can consequently be obtained by solving the generalized
eigenvalue problem for the matrices B and S

Bv; = \Sv; (66)

where S is the overlap matrix S; ; = (d;|d ;). This approach clearly fails if the vectors d; are
linearly dependent. Numerical problems actually already arise if the vectors d; are nearly
linearly dependent, i.e if the overlap matrix is nearly singular, which can be detected by
very small eigenvalues of the overlap matrix. Standard Quasi Newton methods such as
the popular BFGS variant, named after their inventors Broydens, Fletcher, Goldfarb and
Shanno, can therefore fail in such cases. Linearly dependent vectors can be encountered
if the minimization is started far away from the local minimum. If the minimiztion starts
close to the local minimum where the function can be well approximated by a quadratic
form such problems do generally not arise and rapid convergence is generally found. The
most popular implementation of the BFGS method is the Limited memory LBFGS variant
where second derivative information is exploited only from the few last iterations. Typi-
cally a history length of about 10 1s choosen. Even if the dimension of the entire Hessian

0-79

matrix 1s in general much larger than this history length, it turns out that the convergence
speed 1s not improved by a longer history. On the contrary, a too long history can lead to
numerical instabilities.

Exercise [4pt]: Extracting curvature information from a set of gradient vectors:

Take the local minimum R of the 38 atom LJ cluster of the previous exercise and calculate
the Hessian matrix for this configuration using the subroutine hessian_LJ.py (available in
the tar file at http:/comphys.unibas.ch/teaching.htm). Find the eigenvalues of this matrix
by using the routine from
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh. html#numpy.linalg.eigh
Six of these eigenvalues should be zero corresponding to the three translations and the
three rotations that leave the energy invariant. The entire set of eigenvalues will serve as
reference values for the following part of this exercise.

Next, perturb this minimum by a random displacement

ro =Ro+ay

where ¥ is a random vector and the amplitude a should be about 1.e-2. Generate then a
sequence of configurations r;, i = 1,...,n, by performing a steepest descent geometry opti-
mization with an energy or gradient feedback. Consider then the sequence of displacement
vectors d;

di=r;—r,

0-80

Use at each configuration r; the corresponding force {; to obtain the gradient difference
G;
G =—(fi—fi1)

Calculate then the overlap matrix S; j = (d;|d ;) and the Hessian matrix in this basis, B; j =
(Gi|d;) for several values of n. For a purely quadratic form the Hessian matrix B would
be symmetric, i.e B; j = Bj ;. Since this is not the case there will be small deviations from
symmetry. Check that these deviations get smaller if the initial displacement amplitude is
reduced. Next calculate the eigenvalues of the generalized eigenvalue problem of Eq. 66
using /newline https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eig. html.
Verify that you get for small values of n already with reasonable precision the large eigen-
values of the full Hession matrix and that all the eigenvalues lie within the spectrum of
the full Hessian matrix. Verify that once n gets larger numerical instabilities arise which
prevent obtaining all the 3 x 38 eigenvalues of the full Hessian matrix correctly.

0-81

5.11 The DIIS (Direct Inversion in Iterative Subspace) minimization
method

Be C., the exact solution of a quadratic minimization problem and ¢; (i=1, ..,m) a set of m
approximate solution vectors. Their error vectors are defined by

€m = Cm — Coo (67)

We form a new vector ¢,

Con = f d;é; (68)

idi_)i = Coo (69)
i—1
Y di(e.+é) = i (70)
i—1
fdiax,—l-idi_} = Coo (71)

This 1s satisfied if

m m
Y di=1 : Y digi=0 (72)
i=1 i=1

Last condition can only be fulfilled approximately, leading to the minimization problem

min [<i d,‘€,‘| i di€i>] (73)
i=1

under the constraint };" ; d; = 1. This leads to the system of equations

(<61|€1> <61’62> 61|€m 1 \ (d1 \ (0 \
<62|€1> <62’82> <62|€m d2 0
: =10 (74)
(emler) (em|e2) .. (em|em A 0
\ r o)\de) \ 1)
In practice the error vectors are approximated by é; = Pg;
The new vector 1s then given by . 3
gm — Vf(zm) (75)
Crr1 = Cm — P, (76)

0-83

Variable preconditioning DIIS implementation

There are possibly two preconditioning matrices P = P,, and P = P,, that depend on the
iteration step m.
At the m-th step do

gm — Vf(gn’l) (77)
&, = P , i=1,..m (78)

e Solve Eq. 74 to get ¢, = Y:" d;c; . Under the assumption that we are in a quadratic
region, the coefficients d; allow us then also to calculate

= V£ (Cn Z =Y diVf(d) =) dig (79)
i=1 i—1

~ o~

Zm—i—l — g')m — ngm (80)

This implementation requires to store 3 sequences of vectors: ¢;, g; and ¢;. If the ap-
plication of the preconditioning matrix P,, is cheap the ¢;’s can be calculated on the fly
from the g;’s and one does not have to store them. The most expensive step is usually the
calculation of the gradient g,,, which has to be done once during each iteration.

0-84

Fixed preconditioning DIIS implementation

Only the two sequences ¢,, and ¢, have to be stored if there is a single preconditioning
matrix P that does not change during the iterations.

gn=Vf(Cn) (81)
én = P3, (82)

e Solve Eq. 74 to get ¢, = Yi" d;¢; Under the assumption that we are in a quadratic
region, the coefficients d; would allow us then also to calculate g,,, even though we
do not actually calculate it

Y diVf(E) =) dig (83)

=1 i=1

1=

8 =V[(Cn) =Vf() dt) =
=1

m m m m
Cnyl = Cn—Pg,, =Y dici—PY digi=) di(¢i—Pg;) =) di(¢i—¢;) (84)
i~1 i=1 i=1 i=1

0-85

5.12 Comparison of Minimization Methods

Steepest descent versus methods with faster convergence rates

Both CG, DIIS and QN methods assume that we are in a quadratic region. This is fre-
quently not the case at the start of a minimization procedure. In this case steepest descent
with feedback 1s the method of choice, since the other methods will frequently diverge in
a strongly non-quadratic region. The line minimization makes the CG however somewhat
more stable than the other methods.

DIIS versus CG and QN

The DIIS method has the advantage that it is more flexible than CG and QN. Even though
there 1s also a preconditioned version of the CG method there 1s no preconditioned CG
method that would allow for variable preconditioning. Since the set of approximate solu-
tion vectors ¢, is arbitrary, the DIIS method can be applied to a constrained minimization
problem. Imposing constraints after each iteration modifies the sequence of approximate
solution vectors generated during the iterations and would be illegal in the CG method. In
the DIIS method imposing the constraints does not bother. The disadvantage of the DIIS
method compared to the CG method is that it needs more memory to hold the set of vec-
tors ¢; and ¢;. If memory is limited, the sequence of vectors can be restricted to a certain

0-86

maximum value. One keeps for instance only the sequence of the last 10 iterations, even
though one might need 50 iterations to converge. It turns out that with a reasonably long
truncated sequence the convergence is not slowed down significantly. Another advantage
of the DIIS and QN methods over the CG method is that they require only a single force
evaluation per step.

0-87

PROJECT: A geometry optimization method inspired by molecular
dynamics

Physical background

In contrast to the previously introduced minimization method which are on the gradient,
there are also minimization methods which are based on equations of motion. In this
project the FIRE (fast inertial relaxation engine) method will be introduced. Following
this equation of motion will lead the system to slide down the potential energy surface
by accelerating in the downhill direction and to stop uphill motions. Like a skier sliding
down some mountains, not every step is exactly along the gradient direction, but the mo-
mentum is also taken into account. Therefore the information of previous steps during
the geometry optimization is exploited which are contained in the current velocity. In
contrast, steepest descent for example keeps only limited information of previous steps
(for example a feedback in energy or gradient) when performing a downhill relaxation.
FIRE is especially useful if the energy and forces can not be computed to machine preci-
sion since the velocity will not allow the relaxation path to suddenly change the direction
when the noise level is reached. This is for example the case for density functional the-
ory calculations. The implementation of FIRE is especially easy if a molecular dynamics
integrator has already been implemented, since only small modifications of the velocity
update have to be performed

0-88

The equation of motion for the modified molecular dynamics of FIRE is given by

v(t) = —= —y(0)|v(1)|(¥(t) = F (1)) (85)
Tasks

1. The subroutine lenjon.f90 (available at http:/comphys.unibas.ch/teaching.htm) which
will provide the energy and forces of a system consisting of Lennard-Jones parti-
cles. On the Cambridge Cluster Database
(http://www-wales.ch.cam.ac.uk/CCD.html) there are many putative global mini-
mum configurations for Lennard-Jones clusters. The file format of the files is the
xyz format and can be visualized with v_sim
(http://inac.cea.fr/sp2m/L_Sim/V _Sim/index.en.html) (also available from the ubuntu
repositories). Write a test program to make sure that the Lennard-Jones subroutine
1s working correctly by comparing the computed energies with the reference ener-
gies on the Combridge Cluster Database.

2. Write a program that will perform a classical molecular dynamics simulation with
the Euler algorithm. The Euler algorithm can be derived using the forward finite
difference formula for both the coordinates of the particles i and their velocities.

Xi(t) _ Xi(t—FAgz—Xi(t)

0-89

a,-(t) _ V,‘(H—Aii—vi(t)

Solving for the terms describing the state at ¢t + At we arrive at the iterative scheme
to update the particle coordinates and their velocities.

x;(t+At) =x;(t)+v(t)At
Vi(t —|—AI) = Vi(t) —|—\"i(I)At

First use the Newtons’s equation of motion to compute v;, namely v; = F;/m;. Run
a molecular dynamics simulation on a dimer of two particles using your binary
Lennard-Jones subroutine. Choose a timestep which is not too large. Plot the total
energy along the molecular dynamics trajectory. You will observe a slight increase
in the total energy as the simulation progresses. Although the energy is not con-
served, the Euler algorithm will be good enough to perform the FIRE relaxation.

. Now we will modify the velocity verlet algorithm such as to obtain the FIRE ge-
ometry optimization algorithm. Modify the velocity update during the molecular
dynamics simulation as follows:

e gset initial values: Ar = Ary, 00 = Olysqpr, V=0

0-90

use normal molecular dynamics to compute x, F = —grad(E) and v
check if the force norm is converged, and if converged: stop!

calculate the power P = F - v. This value will tell us if moving along the
downhill (P > 0) or uphill (P < 0) direction on the energy landscape.

set v— (1 —a)v+ oF|v|. Try to understand this update mechanism. How do
we need to choose o in order to arrive at the steepest descent algorithm?

if the downhill motion is retained (P > 0) in at least N,,;, censecutive steps,
then At — min(Af fipe, Atmay) and o0 — Oufy. It is important not to accelerate
the dynamics initially (for the first N,,;, steps) to get a stable relaxation.

if we encounter an uphill motion (P < 0), then At — At f40c, V— 0 and o0 —
Ols;qare- This means that we immediately stop the MD and do a restart if we
encounter a negative power P during the relaxation.

return to MD and repeat

Good parameters for the FIRE algorithm are:
Nupin =5, fine = 1.1, faec = 0.5, Ogarr = 0.3, fo, = 0.99. Good values for the
timesteps are Afg = 5.d — 3 and At = 1.d — 2, but feel free to tune the param-

0-91

4. Perform a statistical comparison to the steepest descent method implemented in the
previous exercises (the best modification is with gradient feedback). As a statistical
dataset you can use the putative global minima structure found on the Cambridge
cluster database with small random displacements from equilibrium. How do the
methods compare for small clusters (less than 15 atoms), how for large clusters
(more than 100 atoms)? What do you think is the explanation of your results?

0-92

6 Atomistic simulations and molecular dynamics

Atomistic simulations are simulations where the atomistic structure of matter 1s fully ac-
counted for. This 1s in contrast to macroscopic simulations where the basic quantities
are macroscopic quantities such as density or pressure. In atomistic simulations the exact
number of atoms in the system, the positions of the atoms and their velocities are typically
known. This atomic resolution has of course its price. One can not simulate macroscop-
ically large systems. Those systems would contain an astronomically large number of
atoms and the simulation would take a quasi infinite time even on the fastest computer.
The number of atoms that can be treated in an atomistic simulation varies depending on
how accurately the interactions among the atoms are treated. In principle the interactions
between atoms are mediated through the electrons which have to be treated by quantum
mechanics. If the electrons are treated with the most accurate quantum mechanical meth-
ods one can at most treat molecules containing a few atoms. With less accurate but nev-
ertheless predictive methods such as density functional methods one can treat up to a few
hundred atoms. Quantum mechanical electronic structure methods are an advanced topic
that will not be treated in this course. In this course we will assume that the interactions
between the atoms are described by so-called force fields with sufficient accuracy. Force
fields eliminate the electrons entirely and are therefore not quantum mechanical methods.
One assumes that the interactions between the atoms can be described by some classical

0-93

potential. This classical potential is not of a simple form such as the gravitational poten-
tial but it contains in general fairly complicated terms. The general form of these terms
is guided by chemical intuition. Nevertheless it varies for different force fields. The final
form of a force field requires to fix many variables. The value of these variables is found
by fitting such that various quantities, that can be calculated with a force field, agree either
with experimental data or with data that has been calculated with highly accurate quan-
tum mechanical methods. As a consequence of this construction force fields typically
give fairly accurate results for systems that are similar to the systems that were used for
the fitting procedure but for system that are very different they can fail.

A force field is an expression for the energy of the systems as a function of the atomic
positions. The force fields from chemistry contain the following basic terms

e A bond stretching energy: const (|R; — Rj| —d; ;)*. Only atoms i and j that are
connected by bonds of length d; ; give such an energy contribution. The definition
which atoms are connected by bonds is based on simple geometric criteria and is
fixed at the start of the simulation. As a consequence, bonds can not be broken or
formed during the simulation

 Bond bending terms, that rise the energy if the angle formed by the two atoms
bonded to a central atom, deviates from the ideal angle for the bonding configura-
tion. The determination of the ideal angle is usually based on the expected hyd-
bridisation of the central atom and is also fixed at the start of the simulation. Hence

0-94

a carbon atom can for instance not change from being sp> bonded to being sp?
bonded during a simulation.

e Torsional terms, that depend on how planar a sequence of 3 bonds is

® 0
Td

Y
s S

Figure 1: bondstretching: the distance d changes, bond bending: the angle 3 changes,
torsion: the angle Y changes

Depending on the force field more sophisticated terms are included, such as terms that
couple torsions to stretchings or higher than quadratic terms for the stretching part. All the
terms listed up to now have the property that they are short range. Physically this means
that the energy of an atom is not influenced by what is going on further away. Only close
by bonded neighbor atoms count. Computationally this means that the energy and forces

0-95

can be calculated with linear scaling as will be discussed in more detail soon. Force fields
of this type are also widely used in theoretical biology to simulate large biomolecules such
as proteins.

In addition to these short range interactions there are long range terms:

* Van der Waals terms
e Electrostatic terms

Some force fields that originated in the physics community are more sophisticated. They
allow for bond breaking and forming as well as for hybridisation changes. At the start
of a simulation one has to specify only the atomic positions, but not their connectivity.
Their disadvantage 1s that they typically exist only for materials composed of a single
type of atoms such as silicon and do not allow to put other chemical elements into the
system. These kinds of force fields are also frequently called interatomic potentials. For
technologically important materials such as silicon or carbon several different force fields
can be found in the literature. Among the best force fields for silicon available today is
the EDIP (Environment Dependent Interatomic Potential) force field that will be used in
the project on silicon melting.

0-96

6.1 Structure determination

At zero temperature the structure of a molecule or solid is given by the condition that
its energy 1s minimal. Hence, if we want to find the structure with the help of a force
field we have to vary the positions of the atoms until we find a minimum. From the
mathematical point of view we thus have to find the minimum of a function which is the
force field energy expression. This function that represents the dependence of the energy
on the atomic positions is called the potential energy surface. We have thus to find minima
‘on’ this potential energy surface. The potential energy surface is typically a complicated
function with many minima. For the moment we will neglect the fact that many minima
exist and assume that we just want to find a single minimum. Numerical methods to find
the minimum have previously been discussed.

0-97

The situation is illustrated below for the simplest case of a diatomic molecule such as H».
Obviously, in this case the energy depends only on the distance d = |[R; — R;| between
the two nuclei. Some reactive force field (i.e. a force field that allows for bond breaking)
may give the curve shown below. The structure of such a diatomic molecule is described
by a single number, which is the bond length. This bond length dp,,, 1s the length that
minimizes the force field energy expression E(d).

3

E(d)/E_bond
=

d/d_bond

At finite temperature the structure of condensed matter is determined by the condition
that the free energy FF = E — T'S is minimal. In many cases the entropy S is small and
the term 7'S can be neglected at room temperature. So the structure 1s again determined
by the condition that the energy i1s minimal. There are however exceptions and it will be
discussed later on how to calculate the entropy contributions to F.

0-98

PROJECT: Phase transition of Silicon from cubic diamond to 3-Sn

Physical background

In this project you will calculate the transition pressure p; for the cubic diamond to -
Sn phase transition of silicon under hydrostatic compressions. The method to determine
the transition pressure is based on the fact that the negative derivative of the energy with

. __ JE(V) .

respect to the volume is the pressure, p = —==. So a tangent touching an energy curve
E(V)in a E —V diagram will have a slope corresponding to —p at the point of contact.
For two phases a and b in a E —V diagram, commonly approximated by two parabola, a
common tangent will have the slope corresponding to the pressure —p;. At this pressure
both phases can coexist (see figure below). This common-tangent construction will also
give the transition volumes of the two phases, which are different from the equilibrium

volumes.
Energy

A

The calculations will be performed with density functional theory (DFT) calculations us-
ing the abinit plane wave package. DFT calculations are used to obtain an approximate
solution of the many-electron Schroedinger equation and is the most common method to
perform ab initio calculations. With DFT many-electron systems can be treated with a
reasonable amount of computational cost while still giving good accuracy on most physi-
cally interesting quantities (like equilibrium geometries). It is being successfully used not
only in physics, but also in chemistry, biology and material science. You will learn how
to use the abinit plane wave package to perform simple energy calculations as a function
of the unit cell volume. The results will then be used to creat a E —V diagram of the two

silicon bulk phases cubic diamond and [3-Sn and the transition pressure is then computed.
Tasks

1. First install abinit either by downloading the source file from http://www.abinit.org/
or, if you have ubuntu installed on your system, by getting an older version of
the package from the ubuntu repositories. You may want to run some tests to be
sure that abinit was installed correctly, or do some tutorial tasks also available on
http://www.abinit.org/.

2. The structure of the cubic diamond (relaxed at 0GPa) and the B-Sn (relaxed at
12GPa) phase of silicon are available at http:/comphys.unibas.ch/teaching.htm in
a format which can be visualized using the
v_sim tool http://inac.cea.fr/sp2m/L_Sim/Vi_Sim/index.en.html (also available from

0-100

the ubuntu repositories). Before running abinit you need to prepare the input files.
In chemistry, the valence electrons provide the most important contribution to the
interatomic interaction. Therefore, in DFT calculations, the core electrons are very
often replaced by pseudopotentials fitted to all-electron calculations. For silicon the
following pseudopotential file is needed:
ftp://ftp.abinit.org/pub/abinitio/Psps/LDA_HGH/14s1.4.hgh. The abinit software will
read the input parameters for the calculations from a file, which has usually the ex-
tension “.in”’. This file also includes all unit cell parameters. We have prepared two
input files for a single energy calculation called diamond.in and betatin.in. Read
the input file and try to understand the meaning of each line. All keywords are
commented in the file and there 1s a good user guide on the abinit web page with
a detailed documentation on all keywords. In abinit, the keywords are followed by
the values of the parameters related to the keyword. However, the ordering of the
keywords within the input file is not important.

Sample the energies with respect to the unit cell volume using modified input files.
For this you need to compress and expand the given unit cell and compute the en-
ergies. This can be done by modifying the parameters of “acell”, which contain the
unit cell vector length. Of course, the atomic positions, contained in the keyword
“xcart”, also need to be scaled according to the change of unit cell volume. The unit
cell volume will be computed automatically by abinit and can be found by looking

0-101

for the variable “ucvol” in the output file. Do not compress or expand the cell to
much since the quadratic region of the energy vs. volume function is not very large.
So a volume change of max. +5% around the energy minimum should be enough.
Be careful since the 3-Sn structure is not at the energy minimum, but at the enthalpy
minimum at 12 GPa. The energy values can be found in the output file if you search
for “Etotal”. To run abinit, prepare a file (for example diamond.files) containing the
filenames with the following meaning:

ab.in The main input file

ab.out The main output will be put into the file

abi The name of input wavefunctions (if any)

abo The output wavefunctions will be written to abo_WFK

tmp The temporary files will have a name that use the root ”tmp”

14s1.4.hgh The pseudopotential needed for this job

Then, use abinit < diamond.files >& log to run the job (or abinis for old
versions).

Hint: instead of preparing a new input file for each unit cell volume you can use
the keyword “ndtset”, followed by the number n,,, of data sets you would like

0-102

to compute. Then, where the unit cell i1s defined, you can enumerate “acell” and
“xcart” from 1 to ny,,, like: acelll, xcartl, acell2, xcart2, and so on.

. Plot the results you obtained from both cubic diamond and B-Sn structure in an
energy vs. volume plot (don’t forget to use the energy per atom). Then, fit two
parabola into the two data sets. Find a tangent that touches both parabola and com-
pute its slope. The slope 1s exactly the pressure p; at which a phase transition be-
tween cubic diamond and [3-Sn structure is possible. Remember that all calculations
in abinit are performed in atomic units, and that 1Ha/Bohr? is 29421.033GPa.

0-103

6.2 Vibrational properties

At finite temperature the atoms of a molecule or solid are not exactly clamped at the
atomic positions that give the lowest energy. Instead they perform oszillations around
these equilibrium positions. Typically the thermal energies are very small compared to
the variations of the potential energy surface and so the oscillations explore only a small
volume around the equilibrium positions. Within this small volume the potential energy
surface can be approximated by a quadratic form. For simplicity, let us first consider again
the case of the H> molecule and let us assume that the two atoms are aligned along the x
axis and that they can only move along the x axis. In this case the potential energy surface
from the previous figure can be approximated around the equilibrium bond length dp,4

by

E

Epona + c(d — dpona)* = Epona +c(X2 — X1 — dpona)* (86)
Epona + ¢(Xo — dpona)* — 2cX1 (X2 — dpona)* + X7 (87)
T
X2 dbond C —C XZ — dbond
Epona + () (—c C > (X, (88)
T
X, —XO c —c X, — X3
E"O”d+< X, — XO) (—¢ ¢)(Xl—X{) (89)

0-104

where XY = dy,,g and X? = 0. The previous approximate form is identical to a Taylor
development of a multivariate function up to second order terms. The first order term van-
ishes because of the condition that the gradient vanishes in a minimum. The generalization
to the case of an arbitrary molecule or solid 1s straightforward. The Taylor expansion of
the potential energy surface takes on the following form

1
EO—I— EZ(RI—R(I))D]J(RJ—RS)) (90)
1J
R; 1s the position of the atom 7 and it is therefore a vector of length 3. The superscript
zero (such as in R(I)) always refers to the equilibrium configuration. The elements of the 3
by 3 matrices Dy ; are called the interatomic force constants.

/ O°E _Q’E_ _O’E \
dXrdX; R;=RY R;=R) oXyoY; R;=R} R;=R) 9X19Z; R;=R} R;=R]
D= | ZE _0’E_ O’E 91)
1.J — aY]aXJ R]:R(I),RJ:R? 8Y18YJ R]:R?,R]:Rg aYIaZJ RI:R?’RJ:Rg
PE O’E_ O
\ 9Z10X; R;=R) R,=R! 9Z1oYy R;=R} R;=RY 92192 R;=R} R;=R))
The force as obtained from Eq. 90 1s given by
%))
0
F; = "R, = —ZJ:D,,J(RJ —R)) (92)

0-105

Since the restoring force 1s linear in the displacement away from equilibrium R; — R9 the
motion will be oszillatory and we can therefore make the ansatz

R; (1) —RY = U/ exp(iovt) (93)
Inserting this ansatz into Newton’s equation of motion
M]R[(I) =3) (94)

gives
;M U; =Y DU (95)
J

This is an generalized eigenvalue problem. Upon solving it by well known numerical
methods one obtains the eigenvalues and eigenvectors of this eigenvalue problem. The
eigenvalues are the squares of the frequencies ®; of the different vibrational modes and
the eigenvectors tell us which atom moves in which way if this mode is excited. A mode
is called delocalized if all the atoms participate significantly to the oszillatory motion. If
only a subgroup of atoms is participating a mode 1s called localized.

0-106

Exercise [3pt]: Properties of vibrational modes with rotational character:

Even though the energy of a cluster is invariant under rotations, moving by a finite amount
along a rotational mode does change the energy. Show graphically and analytically that
interatomic distances increase if the system moves along a mode with rotational charac-
ter. To demonstrate this analytically consider a move where the new atomic position r; are
given by ¥’ = r;+€u X r;. 1; are the old atomic positions, and is the axis of rotation that
is perpendicular to the plane of rotation. All atomic positions are measured with respect
to the center of mass. Calculate the length of the initial coordinates r; and and the moved
coordinates r;. The file LJ13.xyz contains the positions of the global minimum structure
of a 13 atom Lennard Jones cluster. Using the routines hessian_LJ.py and LJ_calc.py
verify first that there are 6 modes that have exactly (up to numerical noise) zero eigenval-
ues. The three translational modes are in general still closer to zero than the rotational
modes. Generate then a random displacement vector whose elements are in the intervall
[-1/2:1/2] and add this vector with varying amplitudes to the atomic positions. Start with
amplitudes of 1.d-8 and double them until 1.d-2 is reached. Monitor the evolution of the 3
rotational modes. Do these eigenvalues decay linearly, quadratically or exponentially to
zero?

Next plot the energy when the cluster is moving along a rotational mode (such as mode
6) and a non-rotational mode (such as mode 7), i.e. ¥; =r;+ levi-‘. where V¥ is the k-th
eigenvector of the hamiltonian calculated at the exact global minimum (i.e k=6,7). Plot
the energy with 51 points, ie.e [=-25,25. Chose the step size € such that the the energy

0-107

varies by about 0.01 Lennard Jones units along the trajectory. Perform a fit of this energy.
With gnuplot this can be done in the following way

gnuplot> plot 'mode6.dat’ using 1:2

gnuplot> f(x)= a + b*x**2 + c*x**4

gnuplot> fit f(x) 'modeb.dat’ using 1:2 via a,b,c
gnuplot> replot f(x)

Is it justified that the the 3 rotational modes have ® = 0?

0-108

6.3 Molecular dynamics

Molecular dynamics (MD) is a widely used tool in atomistic simulations. In a molecular
dynamics simulation one calculates the trajectories of all the atoms in a system using
Newton’s equations of motion. In a numerical simulation the continuous time variable
is discretized into finite time steps and for each time step one updates all the atomic
positions. Molecular dynamics 1s like a very powerful microscope that shows all the
atomic positions and their evolution in time. It can be used to

e calculate thermodynamic averages, since for an ergodic system (realistic systems
are ergodic) time averages are equal to ensemble averages. For such an application
MD is an alternative to Monte Carlo methods.

 In contrast to Monte Carlo methods it can also be used to calculate non-equilibrium
thermodynamic properties such as transport properties.

e MD can be used to follow any atomistic process, such as a chemical reaction or the
opening of a crack in a material shown below
(taken from www.almaden.ibm.com/st/Simulate/Fracture/).

0-109

Velocity and temperature due to a crack propagation in a volume containing ~ 10° atoms

The forces acting on the nuclei (i.e. on the atoms) in a given configuration are needed for
a MD simulation. These forces can be obtained in two ways

e From an ab-initio electronic structure calculation. This is in principle the prefered
way, but it i1s numerically very costly. As a consequence one can afford only a
relatively small number of time steps. The basic time scale in a MD simulation
1s the oscillation period of fast phononic vibrations. The MD time step 1s a small
fraction (perhaps 1/20) of this period. Consequently one can follow with ab-initio
MD only events that occur within a few vibrational periods.

e Because of these limitations force fields are frequently used to obtain the forces.
Even though the forces obtained from force fields are in general less reliable than
ab initio forces, they are orders of magnitude faster to compute.

e Recently machine learning methods have been developed to represent potential en-
ergy surfaces. The can frequently achieve the accuracy of ab-initio methods but are
much faster.

0-111

6.4 Boundary conditions

Periodic boundary conditions are a natural choice if one wants to describe crystalline
solids where the basic building block is repeated quasi ad infinitum. With periodic bound-
ary conditions, a particle near the boundary of the periodic volume interacts across the
boundary with the periodic images of particles at the opposite end of the periodic volume.
Periodic boundary conditions are also useful in many other situations. If one wants to
simulate a liquid, one could put it into some kind of virtual container that could in a
simulation for instance be modeled by a strongly repulsive potential. Close to the wall one
would then have surface effects and in order to have the influence of these surfaces small,
a very large system with a larger volume to surface ratio would need to be simulated.
It turns out that periodic boundary conditions eliminate to a large extent surface effects
and the thermodynamic limit can be approached much faster than with other boundary
conditions. This is intuitively understandable. With periodic boundary conditions any
particle is surrounded by other particles and no particle is close to a surface. The same
considerations hold also true if one is studying a molecule in solvation.

0-112

Periodic boundary conditions are illustrated below. The particles 1 and 3 that would only
interact with particles 4 and 2 under non-periodic boundary condition because no other
particles are within the cutoff range of the potential, are now interacting with the periodic

images of 3 and 1 respectively.

@ e @O0 GO
O (s O © O (s
@ - ()

O Q@ 0@ oG
O (® O (® O (s
(-3 - -

@ e @0 GO

O (® O (9 O (s
(-3 - -

0-113

The motion of particles in a molecular dynamics simulation is also affected by periodic
boundary conditions. A particle that leaves the box on one side is entering with the same
velocity through the opposite side. This is illustrated in the figure below for particle 4.
The figure shows the positions of 4 particles at two consecutive time steps in a molecular
dynamics simulation. Whereas in the previous figure all the periodic images were shown,
only the relevant periodic image 1s shown below.

0-114

6.5 Time propagation algorithms for MD

In this section we will assume that the forces are given and concentrate onto how to use
them to numerically solve Newton’s equation of motion:

d*R;
dt?

A good time propagation scheme should have the following properties:

M, = F; (96)

e Short term accuracy

The accuracy of an algorithm measures the difference in the true trajectory satis-
fying Newton’s equation of motion and the numerical trajectory which is a finite
sequence of atomic positions. One has to distinguish between the short term error,
1.e. the error that one encounters if one follows a trajectory only over a short time
interval and the long term error. The short term error i1s obviously related to the
order of the finite difference formula that is used to calculate the second derivative
in Newtons equation.

* Long term accuracy
The long term accuracy is not related to the short term accuracy. As a matter of
fact long term accuracy is more important than short term accuracy since in molec-
ular dynamics one is frequently doing millions of time steps. The most important

0-115

aspect concerning the long term stability 1s the conservation of energy. As for the
continuous case energy conservation is satisfied if one has time reversibility. Time
reversibility means that the system would trace back its trajectory in phase space if
one were to reverse all the velocities at a given instant in time. Let us now give a
simple argument to show that a reversible time propagation algorithms can not give
rise to a systematic drift of some quantity away from the true value, but that it can
only fluctuate around this true value. The proof of this property is by contradiction.
Let us assume that some quantity such as the total energy, which should be con-
served, is increasing during a simulation. The total energy at the end configuration
Ep would thus be larger than at the initial configuration E4, Ep > E4. Running
backward we would get E4 > Ep which 1s a contradiction.

Area preservation in phase space
As does the true Newtonian dynamics, the numerical time propagation scheme
should conserve any volume element in phase space.

Insensitivity to rounding
Since the time propagation scheme is used in floating point arithmetic, it should be
insensitive to rounding errors.

0-116

In spite of numerous research efforts the simple Verlet algorithm, obtained from a simple
first order finite difference approximation to Newton’s equation, has turned out to be one
of the best according to the above criteria:

2
Ri(t—l—h) :2Ri(t)—Ri(t—h)—l—%Fi(Ri(t)) 97)
h denotes the time step. It is easy to see that the Verlet algorithm is time reversible.
Replacing h by —h 1in Eq. 97 gives back the same prescription. Its short term accuracy 1s
only moderate, namely 4. There is a second version of the Verlet algorithm, the velocity
Verlet algorithm, which is identical in exact arithmetic to the original Verlet algorithm of
Eq. 97 but which is more stable in finite precision arithmetic.

Ri(t+h) = Ri(t)+hVi(t)+2A24_Fi(Ri(t)) (98)
Vit+h) = Vi<t)_|’2M.(Fi<Ri(Z+h))+Fi<Ri(t))) (99)

The array V 1in the velocity Verlet algorithm is 1nitially just a dummy variable that holds
some partial results. However Eq. 99 suggests to look upon it as a velocity.
Exercise [1pt]: By eliminating the velocities in Eq. 98,99 show that it is identical to Eq. 97.

0-117

To 1illustrate the stability of the velocity Verlet algorithm let’s contrast it with another
simple integration method, namely Euler’s method:

Vi(t—l-h) :Vi(l‘)—l-%Fi(Ri(t)) ; Ri(t—l-h) :Ri(t)+hVi(t) (100)
Since Euler’s method is not time reversible, it leads to a systematic drift of the energy
away form its exact value. This is illustrated in Figure below for the case of an harmonic
oscillator with an energy of 1/2. The amplitude of both the position x and the velocity
v increase leading to a rapid rise of the total energy. The increase in the total energy
is slower for smaller time steps, but it does not entirely disappear and it would still be
unacceptably large for simulations that follow the evolution of the system for a duration
of more than a few vibrational Iz)eriods.

I I I
Cox,smalll h ——
iov,smalll h — |
15 b energy, smalli_ h _--zzz-- i

1k
0.5 |
0

-0.5

Propagating the same harmonic oscillator with the velocity verlet algorithm does in con-
trast not show any drift, even for extremely long propagation times. The energy conserva-
tion over a short time interval is shown in the Figure below. The energy is oscillating with
a small amplitude around the exact value without showing any drift.

0

-5e-06
-1le-05
-1.5e-05
-2e-05
-2.5e-05

energy-1/2

-3e-05
-3.5e-05
-4e-05 H

-4.5e-05 =

-5e-05 ' ' '

Even though average quantities such as the energy are well conserved over long time
intervals with the Verlet algorithm, an individual trajectory is not reliable. There is the
so-called Lyapunov instability which tells us that trajectories with slightly different ini-

0-119

tial conditions diverge exponentially fast from each other. For this reason any numerical
trajectory has to diverge exponentially fast from the true trajectory and in the same way
two numerical trajectories with slightly different initial conditions diverge exponentially
fast. This is unavoidable and can not even be cured by the best possible time propagation
algorithm. This Lyapunov instability does not invalidate the MD method. As a matter of
fact, all the exponentially diverging trajectories give very similar average properties.

0-120

6.6 Calculating the short range forces from a force field

By definition, the short range forces cause only interactions between atoms that are close
by. We will denote the radius beyond which the interation is zero by cut. Once one knows
which atoms are close by, the calculation of these short range forces is quick. First one
has however to find out which atoms are close to each other. This information is typically
stored 1n a list that 1s called the nearest neighbor or Verlet list. Let us now discuss how to
calculate this Verlet list.

0-121

In a trivial implementation one searches for each atom over all other atoms as shown be-
low. The 1dentities (i.e. their number) of the nearest neighbors are stored in the array /stb.
The array elements Ista(1,iat) and Ista(2,iat) point to the starting and ending positions
of the section in /stb that contains the neighbors of atom iat.

indlst=0
do iat=1,nat
! starting position
lsta(l,1at)=indlst+1
do jat=1,nat
if (jat.ne.iat) then
xrell= rxyz (1, jat)-rxyz(1l,1iat)
xrel2= rxyz (2, jat)-rxyz(2,1at)
xrel3= rxyz (3, jat)-rxyz (3, 1at)
rr2=xrell**2 + xrel2**2 + xrel3**2
if (rr2 .le. cut**2) then
indlst=indlst+l
! nearest neighbor numbers
lstb(indlst)=7jat
endif
endif
enddo
! ending position
lsta(2,1at)=indlst
enddo

0-122

The above loop has obviously quadratic scaling and would thus become for large systems
the dominating part in the presence of short-range potentials only. This quadratic scaling
can easily be eliminated in the following way. We subdivide the system into cells whose
side length 1s equal to or larger than the interaction range of the potential and we assign
all the particles in the system to one such cell. This can be done with linear scaling. Thus
we can calculate with constant effort (independent of the total number of particles in the
system) the nearest neighbors of each particle, since we have to search only in the same
cell and 1n the neighboring cells. In the two-dimensional case illustrated below we have
to search over 9 cells in the three-dimensional case over 27 cells.

13 14 15 16

0-123

The most elegant way to store the information which particle belongs to which cell 1s the
so called linked cell list. A linked list consists of the two arrays called HEAD and LIST.
The array HEAD has one element for each cell and this element contains the number of
one (the first’) particle in the cell. The array LIST is of length N, where N is the number
paticles, and tells us where in the list the next atom index of the atoms in this cell i1s stored.
Both arrays together with the two-dimensional system of 16 cells containing 18 particles
they are describing is shown on the next page

0-124

Navigating the list:

Head:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17| 9 15 20 19/ 2 |8 13| 6 | 12] 18
List:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20
LD D dslel DL Dal] [ols [nfae]ua] |

(If a place in the table is empty, the value of the
corresponding array element is zero)

SNGIRG
9 ‘D 10 ‘i 12
o
5 6 7 8

0-125

Exercise [3pt]: Write a subroutine that constructs a linked cell list for a two-dimensional
system containig N particles interacting with a potential that has a range of 1. The con-
struction of the linked list is done 'backwards’, i.e. to construct the list of particles in the
subcells, one adds the elements to the heads of the list. This is illustrated on the next page.
Assume that we have already assigned the atoms 1 to 17 to the arrays HEAD and LIST.
Now we consider the atom 18. It is located in the cell 16. Thus we make this atom the new
head of the cell 16. The cell 16 already contains the atoms 3,5 and 16.

0-126

Add the atom 18 to the cell 16, where there are already
atoms 3, 5 and 16:

Head:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

arlo| Jus| [1] [[afel [nfe]nf

List:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1¢ 17 18 1920
L LD dsfal [Tal ol faofs] [

Add the atom 18 to the cell 16, where there are already
atoms 3, 5 and 16,
step 1:

Head:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

arlo| Jus| [1] [Jafel [nfe]nf

List: /
1 2 3 4 b5 6 7 8 9 10 11 12 13 14 15 19/ 17 18 1920
L sl [1| 17 Lol]
- Make the atom 18 point at the head of the cell (l.e. at
the atom 16)

Add the atom 18 to the cell 16, where there are already
atoms 3, 5 and 16,

step 2:
Head:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
rfo | fasl | L L] la]s] [1]e 1]y
List:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1§ 17 18 1920
LD s le DD e Lr] faels [nf el

- Make the atom 18 the new head for the cell 16.

0-127

If we have periodic boundary conditions, we have to duplicate the cells at the boundary of
the system as shown below.

@ @ e v o v a @ G o
@ @ G @
© @ @ @
@ @ @ @
@ @ @G @
@3 @ G @
o @ @ @
Q@ @6 0o 6jla @l e @

0-128

6.7 Long range forces

A straightforward evaluation of the long range forces obviously leads to a quadratic scal-
ing. Various algorithms have been developped to reduce the scaling for the calculation of
the electrostatic interactions. Some of them will be discussed later in the course. Some
proposals also exist to reduce the scaling of the van der Waals interactions, but they will
not be covered 1n this course. Even if such low complexity algorithms are used they have
a large prefactor and so the computational effort for the long range part will always dom-
inate in a simulation of larger systems. Actually because the prefactor is so big, it is not
worthwhile using these low complexity algorithms for medium size systems containing a
few thousand atoms.

Multiple time step MD

The largest possible time step in a MD simulation is related to the time period of a fast
vibrational mode. To get good accuracy the MD step & 1s typically 1/10-th of this period.
The problem i1s that large molecules and in particular biomolecules have a very large
spectrum of vibrational frequencies and the period of the slowest frequencies can be larger
by a factor of 1000 than the period of the fastest mode. This means that one would need 20
000 MD steps to observe just a single oszillation of the slowest mode. Since, in general,

0-129

one wants to observe many periods, the number of MD steps 1s gigantic and the MD
simulation might require an unacceptable amount of computer time.

So-called multiple time step methods can alleviate the problem to a certain extent. In these
methods the forces are subdivided into a long range and a short range part.

F — Flong 4+ Fshort (101)

The dividing line between short and long range is somewhat arbitrary and essentially
dictated by the numerical savings that can be obtained from the resulting scheme. The
basic idea 1s that the long range part of the forces changes little if the atom on which it is
acting is displaced by a small amount. Such small displacements take place on the time
scale of the fast vibrational modes that have mainly the character of bond stretchings.
Since a bond stretching leads to a strong increase in the energy, the associated atomic
displacements must be small. In a multiple time step scheme one therefore calculates
the expensive long range forces not at every MD step but only let’s say every tenth step,
assuming that the long range forces would be nearly constant during these 10 MD steps.
Multiple time steps can be done in the context of the velocity verlet algorithms in such a
way that time reversibility is retained.

0-130

6.8 Calculating the temperature in a MD simulation

The calculation of the temperature and the pressure are based on the generalized equipar-
tition theorem

oH

Py) = keT (102)
oH

(gk=—) = kgT (103)
an

where # is the Hamiltonian and p; and g, are generalized coordinates and momenta. For
the standard case where the kinetic energy part of the Hamiltonian is a simple quadratic
function ﬁ p,% we obtain the well known equipartition principle which says that each
quadratic degree of freedom has an average energy of kgT .

(= p}) =
2M
For an unconstrained system of N, atoms the velocities of the atoms give rise to 3N
quadratic degrees of freedom. Hence one obtains

kgT /2 (104)

N,
4 Mi o _ 3N
Z S ksT (105)

0-131

where V; 1s the 3-component velocity vector of atom i. Since the expectation value in
Eq. 105 can be calculated as an average value in a MD run, one can determine the tem-
perature from this relation. There is one caveat. For an isolated system, that is interacting
only through internal forces, the velocity of the center of mass is constant due to to the
fact that the sum of all the forces vanishes. So there are three translational degrees of
freedom that will not thermalize and the number of thermal degrees of freedom N; that
one encounters in the simulation of a periodic solid or liquid with periodic boundary con-
ditions 1s not 3N,; but 3N,; — 3. If one simulates an isolated molecule there are in addition
3 types of rotational motions that can not thermalize because the torque is conserved and
so the number of degrees of freedom N, is 3N, — 6. For these reasons one has to do the
following two things if one wants to calculate the temperature. from MD. First of all one
has to make sure that the center of mass of the system is not moving, 1.e one has to apply 3
constraints. In the case of an isolated molecule 3 additional constraints have to be applied
by making sure that it 1s not rotating. Then one can calculate the temperature from the

modified relation
1 N, at

— M;V? (106)
N (1)

1=

T

with the appropriate value for N,.
The temperature calculated from Eq. 106 is in principle a time dependent quantity since
the velocities at time ¢ are used for its evaluation. As a matter of fact this temperature

0-132

will not be constant but fluctuate around some average value after the system has been
equilibrated. The fluctuations are getting smaller when the system gets larger and they
would disappear in the thermodynamic limit of an infinitely large system. This limit is of
course unattainable in a numerical simulation. For a system that is not equilibrated the
temperature can take on completely unrealistic values. In order to equilibrate a system one
has to allow it to do a substantial number of oszillations, which can be done with some
few thousand MD steps.

0-133

6.9 Calculating the pressure in a MD simulation

If we choose Cartesian coordinates Eq. 103 becomes

1 Nat
ZR -Fi”") = —NukpT (107)

The total forces can be subdivided into intermolecular forces and external forces, F:*' =
F; +F¢. The latter represent the interactions of the molecules with the walls of the
container and they are therefore related to the pressure P and volume V':

1 Nat
Z R; -F) = —PV (108)
Hence we obtain N
PV = NukpT + Z R;-F;) (109)

The expectation value in the above equation is called the internal virial. It can be brought
into a more convenient form that 1s independent of the origin

ZR Fi=)) RiFjj= ZZ (R;-F;j+R; -Fj) (110)

i L

0-134

where F;; is the part of the force acting on atom i that is due to the interaction with atom

J. Because F;; = —F j; we can further simplify it
1
R,-F,=— R;;-F;; 111

where R;; = R; — R ;. The final form is then

1
PV:NathT+§(ZRij-Fij> (112)

1<Jj

The same remarks that were made for the temperature apply to the pressure. To get a re-
liable pressure the system has to be equilibrated for a sufficiently long time. Nevertheless
the pressure will always oszillate around an average value for a finite system. The expres-
sion in Eq. 112 for the virial can only be used for pairwise interactions. The calculation
becomes quite complicated if the forces are calculated quantum mechanically.

0-135

PROJECT: Determination of the melting temperature of silicon by a
molecular dynamics simulation

Physical background: The melting temperature of a material is by definition the tem-
perature where a solid and liquid phase can coexist. This definition can also be used for
the determination of the melting temperature by a molecular dynamics simulation. We
add a piece of crystalline material to a piece of a very hot liquid and we let the system
equilibrate. The equilibration might result in 3 different scenarios. If the crystalline part
1s very cold and/or the liquid not very hot the whole system will finally crystallize and the
equilibrium temperature will be below the melting temperature.. If the liquid is extremely
hot and/or the crystalline part rather warm as well, the whole system will melt, resulting in
an equilibrium temperature above the melting temperature. Since melting consumes a lot
of energy and since crystallization frees a lot of energy, there is however a wide range of
initial conditions, where one will finally have a coexistence of the liquid and solid phase.
If the 1nitial configuration was overall hotter just a larger part will after equilibration be
found in the liquid phase than if the initial configuration was overall colder.

In order to model the interaction of the silicon atoms we will use the EDIP force field
(http://www-math.mit.edu/"bazant/EDIP/). A subroutine bazant_lib.f90 that implements
the EDIP potential as well as all the other files needed for this project are avilable at
http:/comphys.unibas.ch/teaching.htm. The bazant subroutine returns the forces needed
within the velocity Verlet algorithm for the propagation of the positions.

0-136

Tasks

Write a little program that implements the velocity Verlet algorithm (Eq. 98). Test
the program for an harmonic oscillator. Check that the total energy (potential plus
kinetic) 1s approximately conserved and that that the trajectories are periodic. Ob-

serve the quality of the energy conservation as a function of the size of the time step
h.

To do the MD simulation for silicon, a MD program md.f90 is provided. This
program contains all the lines needed to read an input file with the atomic positions
and velocities as well as a part that writes intermediate and final results into files
that can then be used to visualize the system using the V_Sim software provided
at https://gitlab.com/l_sim/v_sim. What 1s missing are the few lines that implement
the velocity Verlet algorithms. Take over this part form the previous program for an
harmonic oscillator.

Two input files are provided: hot.dat and cold.dat. Run the MD program for 1000
time steps for one or the two input files and verify that the energy is conserved
reasonably well.

0-137

e Add a few lines to calculate the temperature T of the system using the relation

Nat

Z v;|? (113)

(3Nat

where v; 1s the velocity vector of the i-th silicon atom. The value of the Boltzmann
constant kg in the appropriate units as well as the mass M of the silicon atoms are
contained as parameters in the program.

e Determine the melting temperature. To do this run two different molecular dy-
namics simulation where you use as input files input.dat either the file hot.dat or
cold.dat. The atomic positions of the file cold.dat are shown on the next page, the
positions in the file hot.dat are very similar. In both cases a chunk of liquid silicon
1s sandwiched between crystalline silicon as can be seen from the figure on the next
page. The important difference is that the initial velocities of the liquid part are
much higher in the file hot.dat than in the file cold.dat. The file hot.dat represents a
very hot liquid embedded in a crystal, whereas the file cold.dat represents a moder-
ately hot liquid of the same size embedded in the same crystal. After equilibration
the liquid region extends therefore over a much larger volume if hot.dat is used as
the input file than if cold.dat is used as input file. Two representative configurations,
obtained starting from the hot and cold input files, are shown on the following pages

0-138

INITIAL CONFIGURATION

0-139

FINAL CONFIGURATION FORM COLD LIQUID

=

"t

o By,
¥
Fal-. - ‘..
. " .
o gt
- -l
- s :
o

0-140

FINAL CONFIGURATION FORM HOT LIQUID

0-141

Equilibration is reached after some 100000 time steps. If computer time allows
you should however run for up to 200000 time steps. Since the system is finite the
temperature fluctuates and as a matter of fact these fluctuations are considerable for
the system size considered here containing some 1500 atoms. So the temperature
can only be estimated to within perhaps 50 degrees. Verify that both runs give an
equilibrium temperature that differs by less than this uncertainty. The experimental
melting temperature is around 1680 degrees. This experimental melting tempera-
ture was not used to fit the parameters of the EDIP potential.

Up to this point we have neglected one technical problem. The melting temperature
depends on the pressure. Since the equilibrium volumes at a certain temperature of
the liquid and solid phase are different, the pressure is different in the final config-
urations with a smaller or larger fraction of liquid. A clean solution to this problem
would be to do a MD simulation at constant pressure instead of at constant vol-
ume as we did. Calculating the pressure is not so easy in a system with periodic
boundary conditions and a MD simulation at constant pressure is technically more
demanding than at constant volume. For these reasons and because the effect of
pressure on the melting temperature 1s not very strong we will simply ignore the
pressure issue.

0-142

Results

For the evolution of the temperature of the two systems you should get a plot which looks
similar to the following one. Such a plot can be obtained for instance with the gnuplot
software.

2100 T T T T

‘cold liquid
2000 | |

1900 - =
1800 - =
1700 [=

1600 [-

Temperature

1500 |- | S &
1400 .

1300 [-

1200]]]]]]]
0 20000 40000 60000 80000 100000 120000 140000

MD step

0-143

6.10 Calculating the diffusion coefficients in a MD simulation

Diffusion plays a fundamental role in many branches of sciences. It is described by a
macroscopic law that is known as Fick’s law. It states that the flux j of the diffusing
species is proportional to the negative gradient in the concentration ¢ of this species.

j=—-DVc (114)

Even though all the quantities involved are macroscopic, diffusion has a microscopic ori-
gin since it is caused by the thermal motion of the particles. Hence it should be possible
to calculate the diffusion coefficient D with atomistic simulations. In the following it will
be shown how to do this.
We will consider here the simplest case of diffusion which is called self diffusion. One
assumes that all the particles are identical except for some kind of label that allows to keep
track of individual particles, but that does not influence their interactions. Let us assume
that at time t = O the tagged species was concentrated at the origin of our coordinate
system. To compute the time evolution, we must combine Fick’s law with the continuity
equation

dc(r,1)

ot

+V-j(r,t) =0 (115)

0-144

This gives us then the diffusion equation, a differential equation for ¢

de(r, ¢
C(art’) DV2e(r,1) = 0
Solving it with the boundary condition
c(r,0) = d(r)

gives
(r.1) 1 r?
C = exp | ———
= 32 P\ e

We can now calculate the expectation value (r*(¢)) as

Solving this integral one obtains

o(r’(1))

= 6D
ot

(116)

(117)

(118)

(119)

(120)

This relation was derived by Einstein and establishes the relation between the macroscopic
constant D and the microscopic mean square displacement of a particle. For a particle that

0-145

1s initially not at the origin but at the position R? the mean square displacement is simply
given by (R;(¢) — RY)2. If we are interested in selfdiffusion where all particles are equal,
we get better statistics if we sum over all particles and we obtain

1 0

6D = lim (R;(r) —RY)? (121)

[—roo ; Natt

Care has to be taken when using the above expression in the case of periodic boundary
conditions. Periodic boundary conditions restrain the particle positions to remain in the
finite simulation box. Consequently, the diffusion constant would tend to zero for any long
time simulation. Therefore only particle positions that were not periodized are allowed to
be used in Eq. 121. For this reason one has to introduce two sets of particle positions in
a MD simulation that measures the diffusion coefficients. One periodized set that is used
for the calculation of the interactions and another non-periodized set that 1s used for the
calculation of the diffusion constant according to Eq. 121.

Alternatively, the displacement from the initial positions R;(#) — R? can be obtained from
an integral over the velocities:

R;(t) —RY = / t V,(t)at' (122)
0

0-146

Hence

(Ri(1)—R?)? — / / V(" dl de”

= 2 / dr'v;(t) / dt"v;(t")
0 0

The quantity 5 Zivml Vi(t")V;(¢") is called the velocity autocorrelation function. It mea-

sures the correlation between the velocities of a particle at time ¢’ and ¢”. It is an equilib-
rium property of the system and as such it is invariant under a change of the time origin.

1 Nat 1 Nat

—ZV —ZV (1" —")Vi(0) (123)
Nt i— Nt i—
Hence the diffusion coefficient is related to the velocity autocorrelation function in the

following way.
t

6D lim | — Y Vi(t—1')V;(0)dr’ (124)

= J0 at
which becomes after taking the limit
2

6D = i N—at;Vi(’c)Vi(O)d’c (125)

0-147

6.11 Green-Kubo formulas

Eq. 125 is an example of a so-called Green-Kubo relation. They can be established for
many other transport coefficients and relate those to various correlation functions. The
electrical conductivity G, in the z direction is for example given by

A PR
= — V' J(1)JH0)d 126
O = ks T Jy Ny 2t (D (O)T (126)

where the electrical current J; is the product of the charge of the particle and its velocity,
i = qiV;. J°1s the z component of this current. Similar formulas exist for the thermal
conductivity and the shear viscosity.
Exercise [Spt]: Calculation of the velocity-velocity autocorrelation function of molten
sodium:
In the supplementary material you will find files that contain a template (autocorrela-
tion.py) and the initial positions of a 36 atom periodic sodium cell (Na36.extxyz). Parti-
cles that leave the simulation cell during the MD can be brought back within ASE with the
command atoms.wrap(). In Fortran the routine back2cell.f90 is doing this. To perform the
MD, implement the velocity Verlet algorithm and check that the energy is conserved up
to some small amplitude oszillations. For simplicity all the atomic masses can be put to
one and a reasonable time step is of the order of 0.3. The mass of sodium is 23 in atomic
units. Describe the interactions of the sodium atoms with the embedded atom method

0-148

(Na_v2.eam.fs in MATERIAL folder). Set an initial temperature of 2000 K and detect
when the system melts. This can be easily seen from the radial distribution function which
is provided for instance in the Ovito software under ”’Add modification/coordination anal-
ysis. A cutoff of 8 and 100 bins are good choices. During melting the initially sharp peaks
of the solid become smeared out in a nearly continuous distribution upon melting. Run
then 500 MD steps for the molten system and extract from these 500 steps the velocity-
velocity autocorrelation function. To get a smooth curve average over all atoms in the
system and over several choices of time origins. To get the correlation after 100 time
steps, use for instance not only frame 0 and 100 but also frame 1 and 101, 2 and 102 and
so on up to 400 and 500.

0-149

6.12 Entropies and free energies

The free energy F' = E — T'S 1s one of the central quantities in thermodynamics. At finite
temperature a stable structure 1s given by the condition that the free energy is minimal. In
this way the free energy drives also phase transitions in solids and liquids. The interpre-
tation of these effects is simple. At finite temperature a system is not necessarily in the
macro configuration of the lowest energy, but it might be in another macro configuration
if many more micro states are associated to this configurations. The notion of micro state
refers here to a quantum mechanical state. Let us recall that the free energy F(7T,V,N)
depends on the temperature, volume and the number of particles and it is given by

F = —kgTIn <Zexp(—Ei/(kBT))> (127)

The quantum mechanical states that we have to consider if we are interested in the ground
state structure are the vibrational states for this ground state configuration. At low tem-
perature the harmonic approximation of the potential energy surface (Eq. 90) is usually
valid. For this approximation it 1s derived in advanced solid state or electronic structure
courses that the energy levels of a single frequency ®; are given by

1
Eyp = (n+ 5o (128)

0-150

where ; 1s one of the non-zero frequencies obtained from solving the eigenvalue problem
of Eq. 95. The vibrational state of our system is then specified by the 3N, — 3 (if the
only zero modes are the 3 translational modes) quantum numbers ny,ny, ...,n3y,,—3 and its
energy 1s given by

E:ﬁ((nl—l—%)(ol—l—(nz—l—%)coz—l—...) (129)

If we insert Eq. 129 into Eq. 127 we can simplify the expression for the vibrational part
of the free energy by summing all the geometric series:

1. hwy

) exp(—Ei/kpT) = <§exp(—(n1+§)kB—T)> (Zexp(_(n2+§)lq§—T)>""

_(exp(—3ho/(kgT)) exp(— 3w,/ (kpT))
- 1 —exp(—iw, /(kgT) 1 —exp(—hw,/(kgT) |

So, within the harmonic approximation, the vibrational free energy is given by

cX 1 B
B = kT ;m (1 _péxpz(li% (/k(kZ)T))> _ ;%ﬁm, + kT In (1 — exp(—fiey / (kgT)))

(130)
where the sum is over all the nonzero frequencies @y

0-151

At high temperatures the harmonic approximation fails because the system can explore
a larger region around the equilibrium positions where a quadratic approximation of the
potential energy surface is not any more valid. It also fails for systems that have very
low vibrational frequencies. In this case the harmonic approximation would imply that
the system can oszillate a long distance in the direction of the eigenvector associated to
this low frequency, while the energy always increases quadratically. Generally, this is
however not true because for large displacements the quadratic approximation is not any
more valid and other important potential contributions arise. Such systems are also called
strongly anharmonic.

A technique that allows to calculate the free energy without the assumptions of the har-
monic approximation is thermodynamic integration. The problem with determining the
classical free energy is, that it can not be calculated as the time average of some quantity
that depends on the positions or velocities.

fdedrNexp(—ﬂ(rN,pN)/(kBT)))
(2mh)3NN!

F:—@Tm((131)

Things are however different for derivatives of the free energy. For instance, it can be seen

from either Eq. 127 or Eq. 131 that

oF E

orT T2 (152

0-152

In the classical case the energy expectation value E is given by

1
E = iz | e A0 exp (o (0 (T)) (133)

where

1
Z= o [awar exp(~3£(" p") (ks T)) (134)

E can be calculated for an ergodic system from a MD simulation as E = (# (r"V,p")).
Eq. 132 gives thus rise to the simplest thermodynamic integration scheme which allows
us to calculate the change in the free energy F — Fp as we go from an initial temperature
Ty to a final temperature 7.

T
E_@__/ EM) (135)

T Ty J 2

If E is evaluated through a MD simulation, quantum mechanical effects are of course
absent, in contrast to Eq. 130 that contains the quantum mechanical effects. In order to
get accurate results the fluctuations in the temperature have to be small. This requires long
runs for large systems which require a lot of computer time.

In the quantum mechanical framework the equations corresponding to Eq. 133 and Eq. 134

0-153

arc
1
E=— ZE exp(—E;/(kgT)) (136)

and where Z 1s the partition function

Z =) exp(—Ei/(ksT)) (137)

In the thermodynamic integration scheme described above the integration was along a
physical variable, namely the temperature. In a simulation one can also integrate along
non-physical variables. Such variables can for instance smoothly transform one system
into another one. This kind of transformation is for example necessary if one wants to
know how the free energy changes upon the replacement of a side chain by another side
chain in a large molecule. Let us assume that the system with the initial side chain is
described by an interacting potential U4 and the system with the final side chain by Up.
We can then introduce a transformation

U(A) = Us +MUg — Uy) (138)

Obviously for A = 0 the system is in the initial state and for A = 1 in the final state. The
free energy for a intermediate system is given by Eq. 131 except that the Hamiltonian

0-154

depends now on A

F=—ksTYIn (fdPNdl‘N eXlz;gz»]i]l]‘vN; p")/(ksT))) (139)

Taking the derivative of the free energy with respect to A we get
oF _ [dpVar G exp(s(hx",p")/ (ksT)) 140

BYN [dpNdrN exp(H (A, xV,pV)
(20D, (1an)

since H(A,rV,p") =¥, 52p? +U (A1), { ax”) is again an average value that can be

obtained from a MD simulation by taking the average of () — = Up — Uy over all the MD
steps. By integration (Ugp —Uy) fromA=0to A =1 one obtalns the free energy difference
between the systems described by U4 and Up.

0-155

PROJECT: Concentration of point defects in silicon

Physical background: Perfect crystals can not exist at a finite temperature. There will
always be defects, 1.e. deviations from the perfect periodic structure. Thermodynamics
can predict the concentration of various defects in crystalline materials. In this project we
will consider the simplest point defect in a crystal, namely the vacancy. One obtains a
vacancy simply be taking an atom out of a perfect crystal. This leads of course to some
relaxations of the surrounding atoms. The concentration N; of the vacancies is given by

AF
Ngj = Ny exp (_kB—T> (142)
The difference in the free energy consists of two parts, the difference in energy between
the perfect crystal and the crystal with a defect AE and the difference in the vibrational
free energies AF,;, between the same two configurations, 1.e AF = AE + AF,;,. Since we
want to obtain quantities that are quite independent of the size of our simulation system
we subtract from the values obtained for the system (i.e. crystal with defect) only the
values that a perfect crystaline system with N, — 1 atoms would have:

Na _1
at
Nal’ - 1
AFvib — Fvib,sys (N) — N—Fvib,crys (N) (144)
at

0-156

Tasks

In the file S1216.ascii (avilable at http:/comphys.unibas.ch/teaching.htm) you can
find the atomic positions for a piece of crystaline silicon in the V_Sim format. The
routine provided in the previous project can be used to read in this file. Calculate
the energy of the crystaline system with the Bazant EDIP force field that was also
used in the previous project. Verify that the forces returned by the bazant routine
are virtually zero.

Take out of the file one atom to obtain a system of 215 silicon atoms with one
vacany. Relax the system by doing a simple stepest descent with energy feedback
or even with a constant stepsize. A good step size is 1/50. Then you can use Eq. 143
to calculate AE.

Next we have to calculate the vibrational free energy. For this purpose you have
to write a subroutine that calculates the Hessian matrix of Eq. 90. Remember that
the dimension of this matrix 1s 3N, times 3N,. The best way to do this is to
take numerical first derivatives of the gradient as returned by bazant. Take a finite
difference formula that uses 4 points (i.e. 2 to the right and 2 to the left). There
are various checks that you should do to verify whether this Hessian matrix was
calculated correctly. It should be symmetric (up to a certain small numerical error)
and 1t should have 3 zero (up to numerical precision) eigenvalues corresponding

0-157

to the 3 translations of the system with periodic boundary conditions. Set up the
vectors corresponding to translations along the x,y and z directions and check that
multiplying these vectors with the Hessian gives a nearly zero vector. These tests
should be repeated for several values of 4. An optimal value of 4 is obtained when
these conditions are satiesfied with the smallest numerical error.

Next we have to diagonalize the Hessian matrices for the system with and without
vacancy. This can be done by using the routine jacobi.f90 (provided at
http:/comphys.unibas.ch/teaching.htm) which 1s taken from numerical recipes. Check
again whether there are 3 nearly zero eigenvalues. The eigenvalues returned by ja-
cobi are not ordered by magnitude and so you have to search for them.

Once we have the two sets of eigenvalues, we can calculate the two vibrational
free energies according to Eq. 130, excluding the 3 zero frequencies correspond-
ing to translations. Calculating the dimensionless quantities ,fB—‘”T requires con-
verting all the quantities to a common system of units. Remember that the Hes-
sian as calculated from the gradient returned by the subroutine bazant is given
in units of Z—g. The mass of silicon found in Eq. 95 can be taken as 28 nucle-
onic masses. The various conversion factors needed can for instance be found on
http://physics.nist.gov/cuu/constants/energy.html. Finally we can then calculate the

difference in the vibrational free energy from Eq. 144.

0-158

* Plot the total difference in free energy AF as a function of temperature up to the
melting temperature of silicon (take 1500 Kelvin). Plot the concentration of vacan-
cies as a function of temperature using Eq. 142. You will get a very low concen-
tration at room temperature, which would imply that even in a macroscopic sample
there 1s not a single vacancy.

0-159

Exercise [4pt]: Electrostatic energy of ionic materials:

The energy of ionic materials can be approximated by a simple electrostatic model where
the anions and cations have constant charges. The simplest example is sodium chloride
which forms a cubic lattice (see figure below) where the Na’s have a charge q; of minus
one electron and the Cl’s of plus one electron. For simplicity we assume that the distance
between the Na and CI atoms is one.

Structure of the NaCl crystal. Na’s are shown in red and Cl’s in blue. The Madelung
energy is the electrostatic energy of the large Na atom in the center in the limit where the
cube gets infinitely large.

0-160

Calculating the energy E for a finite crystalline chunk of N atoms (such as shown above)
is trivial
(145)

and by increasing the number of atoms in the summation one would assume that the av-
erage energy per atom e = E /N converges to a well defined bulk value. This is however
not true. The average energy e depends on the shape of the growing cluster even for
very large cluster sizes. To show this effect lets consider three different cluster shapes, a
cube together with the sphere and octahedron inscribed in this cube of sidelength 2n + 1.
So the cube contains N = (2n+ 1)3 atoms. First calculate just the electrostatic energy
of the atom at the center of the cube (and therefore also at the center of the sphere and
octahedron). This is the so-called Madelung energy. The sum required for calculating
the electrostatic energy is well known to be conditionally convergent, i.e the final result
depends on the summation order. Observe the convergence (divergence) behaviour with
increasing n for the sphere, the cube and the octahedron. Show that the convergence is
best for volumes that have charge neutrality. The exact value of the Madelung constant
is 1.74756459463318. This value can relatively easily be calculated with an accuracy
of some 10 decimal places in double precision floating point arithmetic if one assumes
that the charges have an extremely small but non-zero extent. In this case only a certain
fraction of the charges is contained in the growing cube that is used for the summation.
Charges at a surface contribute only half to the sum, those on a edge a quarter and those

0-161

at a corner only one eight. Use this modified summation within the cube to calculate the
Madelung constant with high accuracy. Finally calculate the total electrostatic energy for
a cube and an octahedron both containing about one million atoms. An octahedron has
only (111) surfaces. So its 8 surfaces are perpendicular to the eight vectors (+1,+1,+1).
These surfaces are either purely Na or purely Cl terminated. Check with the v_sim visual-
ization software whether you have correctly generated the octahedral shape.

0-162

7 Treatment of electrostatic and gravitational long range
potentials

The calculation of the energy and forces coming from long range electrostatic forces
(monopole, dipole interaction etc) can be numerically expensive. Let us concentrate on
the slowest decaying monopole interaction. The electrostatic problem is equivalent to a
gravitational problem. Because the gravitational problem lends itself more easily to a
pictorial description of the algorithm, we will consider the gravitational problem.

E=Y (146)
i<j r; — 1|

Trivial algorithm

e=0.

do j=1,n

do i=1,3j-1
rij=sqrt((x(1)-x(3))**2 + (y(1)-y(J))**2 + (z(1)-z(J))**2)
e=e+M (1) *M(7j) /rij

enddo

enddo

Quadratic scaling:
Tepy o N° (147)

0-163

7.1 The Barnes Hut algorithm
TCPU < Nlog(N) (148)

Central idea: From far away, a bunch of stars looks like a single larger star

Observation
: Source
Point

)

)
0o% o
® o %o
® 9

0-164

Step 1: Subdivide system and generate tree

o o o o o o o o o o o o
1 2 3 4 Py 1 2 3 4 PY 1 2 3 4 °
°® 6 °® 6 PY 6
5 5 >
) o ()
L 8 Y 8 P 8
7 7 7 P
[9 ® 9 9
o o o
11 11 11
o o o
° 12 o 12 ° 12
10 10 10

The 1nitial box i1s chosen such that it contains the entire system. This initial box 1s then
successively subdivided into sub-boxes, 4 in the 2-dim case, 8 in the 3-dim case. This
subdivision is stopped when the sub-box contains a single star.

0-165

Step 2: Combine stars into super-stars, super-super-stars, ..., galaxies

=y

~0

e

~Neo

Y

O

~0

ce

~Ne

O

O

Super-stars are formed out of individual stars contained in the boxes at the penultimate
subdivision level. The mass of a super-star equals the sum of the masses of its constituent
stars and it 1s centered at their center of mass. In the same way second order super-stars

(super-super-stars) are formed out of super-stars, third order super-stars out of second
order super-stars and so on.

0-166

Final redundant data structure in tree form

The final redundant data structure contains the positions and masses of the original stars
as well as the positions and masses of all the super-stars of various order.

0-167

Step 3: Calculate forces

A distance d 1s introduced. The interactions of the red star with all the other green stars
within a box of size 2d are calculated exactly. The interactions with the additional stars
that are within a box of size 4d are not calculated exactly but are taken into account as
interactions with the super-stars formed out of these additional stars. In the largest box
shown below only the interactions of the red star with the second order super-stars are
used. 8d

super—super—stars
/ - \\\ -
L\\ /A 7)
~ \‘\ "\
4d N
Super—stars
O () 77N
- 2d -
NG
M | @ stars
_/
o
o o -
7N
()
\\\ //// \7/// / ~ .
)
Ve ""‘\\
3
NG TN
N4

0-168

Since the size of the boxes increases exponentially, there are of the order of log(n) types
of interaction regions and each region contains a few super-stars of a certain order. Hence
one has to sum log(n) terms to take into account the interaction of one fixed star with all
the other n — 1 stars. The total computational effort is consequently c n log(n), where c is
the prefactor. The interaction to be considered for one particular (red) star of our previous
example are shown below, both in real space and within the tree structure.

o0

If one wants to obtain higher accuracy, one has to increase the distance d. This increases
of course the prefactor ¢ since more interactions will be calculated directly.

0-169

7.2 The fast multipole method

The fast multipole method (FMM) goes one step further than the Barnes Hut method.
It uses not only the fact that the potential at an observation point does not depend on
the details of a charge/mass source distribution far away, but also on the fact that the
potential of such a charge/mass distribution is only slowly varying in the neighborhood of
an observation point.

Observation

Poins Source
()
()

o o 0% o

® o %9

e o _JPY

o o

/—‘\ .
o O Potential

0-170

Even though both methods are hierarchical methods, there are differences. FMM is based
on a hierarchy of cells that are combined into larger cells, whereas BH combines stars
(particles) into super-stars, super-super-stars, etc. The FMM hierarchy is shown below.
The cells at the highest (resolution) level (level 3 in the figure below) can contain more
than 1 particle.

Level 1 Level 2 Level 3

FMM also uses redundant data structures. For each cell on any level of the hierarchy, the
following 2 items are stored:

0-171

* The multipole coefficients M, ,, of the charge distribution consisting of particles
with charge g;:
=Y sy, (8) (149)

where s is the position of the particle relative to the cell under consideration. How
many multipoles are stored, depends on the precision that has to be achieved. The
potential V is related to M, ,, by

m=I

multtpole zl: 21_|_1 rl-l—l ZlMl,mYl,m(f’) (150)

* The coefficients L, ,, of the local Taylor expansion of the potential

m=I

VTaylor(r> — Z Z rlLl,m Yl,m(f) (151)

[m=-—I

The conventions of Jackson (1975) were used for the spherical harmonics and multipoles.
h denotes in the following the length of the cells at a certain level of subdivision.

FMM uses the following mathematical transformations. The origin is thereby always the
center of the cell.

0-172

« COMBINE: 8 multipole coefficients M{l ., from a high level are combined to obtain

the multipole coefficient M%Z,L of the parent cell. This requires to first shift the
multipoles into the origin of the parent cell and then to add them. The shifted
multipoles M /jn are given by

M, ,_Z o 1M (152)

(_t)l,_l(zl/ + 1) Yl>I< ' s m—m’ (t) a;’—l,m’—m Al,m

T/ / =4r 153
Lot 1m 214+ 1)(2(I' = 1) +1) ay (153)
2vI1+1
apm = (—1)"*" - (154)
VaAm (I +m)! (I —m)!
where t is the translation vector between the 2 origins.
M, = Y M (155)

8 multipoles
from children

0-173

e FLIP: The coefficients M{l ., are transformed into the coefficients Lfl -

Ly ,_Z ot M (156)

(1)l_'_mYl>‘—<|—l’m m/ (t)alamal’,ml
A2+ 1) (21U 4+ Day g —m

where t is the position of the origin of the Taylor expansion relative to the origin of
the multipole.

(157)

Tl’ m' Im — 4m

e SHIFT: The local Taylor expansion coefficients L?m of 8 children are generated
from the L2h of the parent cell.

Ly ,_Z A o (158)

t! Yl—l’,m’—m (E)al’,m’al—l”,m—m’
QU+1)2U-=1)+1ay,

t is again the translation vector between the 2 origins.

T, ’,l,m :4']'5 (159)

0-174

The FMM algorithm uses the following classification in the calculation of the interactions:

e Acell is near (N) toa if it shares with this cell a side, edge or
corner.

e A cell 1s interactive (I) to a reference cell (R) if both have parents that were near
and if they are themselves not near

e A cell is far (F) in all other cases

The situation is illustrated below:

Level 1 Level 2 Level 3 Level 4

0-175

The FMM algorithm goes now as follows:

 Assign the particles to the cells at the finest level and calculate the multipole expan-
sion coefficients M ,, on the finest level.

e Go from the finest level down to the coarsest level and use the COMBINE operation
to generate the multipole expansion coefficients for all the bigger cells

e Go back from the coarsest level to the finest level. On each level calculate the
coefficients L, ,, that are due to interactions with INTERACTIVE cells using the
FLIP operation. Use the SHIFT operation to obtain the L; ,,’s on the finer scales
from the previously obtained L;, on the coarser scales. The total L;,,’s on the
finest level are obtained by recursively summing both contributions from SHIFT
and FLIP operations each level.

e Using the Taylor expansion, calculate on the finest level the potential/forces at the
position of all the particles. This represents the potential/forces of all the particles
in cells that are not NEAR cells on the finest level. The influence of the NEAR
cells at the finest level is obtained by direct summation of the contributions of all
the particles in the NEAR cells.

The most important workload is be done at the level of the finest cells. The work at the
other levels is small compared to this one (e.g. 1/8th at the second finest level). Hence
the FMM algorithm exhibits linear scaling with respect to the number of the finest cells.

0-176

Exercise [2pt]: Calculate the monopole, dipole and quadrupole moments for the tetra-
hedral, octohedral and cubical arrangements of point charges shown below. Red spheres
represent a positive charge of 1 and green spheres a negative charge of -1.

Each polyhedron is centered at the origin and has an edge length of one. A tetrahedron
can be obtained by filling four non-neighboring corners of a cube, and an octrahedron

can be constructed by filling the six faces. The monopole and the dipole moments for a
system of point charges are defined as,

O=) qc;P=)_ qirx (160)
k k

0-177

where q;, and 1y stand for the value and position of the k' point charge, respectively. The
quadrupole moment tensor is given by the following equation.

Qij =Y aqr (Brixrjx— ijlrxl) (161)
K

The indices i and j run over the x, y and 7 components, so we can write for example the
xXx— or xy—element.

Qux =Y (335 —1%) 3 Oxy =Y ax (3xiyc) (162)
k k

These moments correspond to the multipole coefficients M, ,, of equation 149 expressed
with real-valued linear combinations of spherical harmonics.
Show that the value of the dipole is independent of the choice of the origin if the monopole
of the system is zero.

0-178

7.3 Analytical methods for the solution of Poisson’s equation

Poisson’s equation establishes the relation between a charge density p and its resulting
potential V
V2V (r) = —4np(r) (163)

For non-periodic systems such as atoms and molecules, free boundary conditions where
the potential vanishes at infinity are the appropriate ones. Formally the solution can then
be written as

V(r) = / PI) gy (164)

r—r'|

The numerical solution of Poissons equation is frequently based on the differential form
(Eq. 163) rather than the integral form (Eq. 164).

Poisson’s equation can be solved analytically in a few cases that are also relevant for
numerical methods:

e The trivial case of a delta function with free boundary conditions:

p(r') =8(r') (165)

(166)

e For a spherically Gaussian charge distribution

N 1
)= Gavay

the potential satisfying free boundary conditions is related to the error function er f:

exp(—(r' /a)?) (167)

V()= &L/ (168)
r
e Under periodic boundary conditions a plane wave charge distribution
p(r') =exp(IK-r') (169)
gives a periodic potential

4

V(r) = ﬁexp(lK-r) (170)
Exercise [1pt]: Show that evaluating the potential * erf ((9 4t the origin, r =0 gives
2

(171)

ay/x
Remainder: erf(x) = \/—fo exp(—t%)dt

0-180

7.4 Plane wave techniques

Using the above mentioned analytical properties of plane waves, the solution of Poisson’s
equation under periodic boundary conditions is simple. We have to know the values of
the continuous charge distribution p(r’) on an equally spaced real space grid. The grid
has to be dense enough such that the variation of the charge density between neighboring
grid points 1s small. This real space data set can be transformed into Fourier space by
using the fast Fourier transformation. If there are N 3-dim grid points the cost of the
Fast Fourier transformation is of the order of Nlog,(/N). Once we have the Fourier space
representation of p

p(r) =Y cxexp(/k-r) (172)
k

the Fourier space representation of the potential is

Vi)=Y 42;“ exp(Ik 1) (173)
k

Under periodic boundary conditions it is necessary that the system has no net charge, 1.e.

that co = 0. The real space values of the potential on the grid are obtained by using a
backward Fourier transformation.

0-181

7.5 Ewald techniques

The Ewald method is a standard method to calculate the energy and forces for a system
of charged point particles under periodic boundary conditions. Compared to the case of
free boundary conditions, we have here an additional difficulty. Because of the long range
character of the forces, we would have to sum not only the interactions among particles in
the same box, but also the interactions between particles in the box and the ghost particles
in the periodic images of the box. As we have seen, periodic images can be handled
naturally and efficiently by plane wave techniques. The problem is that a charge density
that 1s a sum of delta functions can not be represented by plane waves. The basic idea of
the Ewald technique is to introduce two charge densities that have the property to sum up
to the correct charge density composed of delta functions. The first charge density p,(r)
consists of a sum of localized charge densities pé-"c(r). Each localized charge density
1s the sum of the original delta function and a Gaussian charge distribution of opposite
charge. This is visualized in the upper panel of the next figure. Each p/°“(r) is shown by

J
a different color. The delta function is visualized by an arrow.

po(6) = L0 (1) = 1.2 (8 R)) - s expl-(r-Ryl/a))) (174

Because the total charge of each localized charge term vanishes, there is no monopole and
by symmetry all the higher multipoles vanish as well. Consequently the potential arising

0-182

from one ploc() decays exponentially. It is easy to show that the total potential is given

b _
y ZZ 1 er|];|_r l’{]|/a Z Jerfc|lr_ R’J|/a) (175)
R, R,

Consequently V, can efficiently be evaluated in real space. If we want to calculate V,(r)
at a certain point r we do not have to evaluate all terms j in the above sum (Eq.175), but
only those that arise from localized charge distributions that are close to r on the scale of
a. Because of the periodic boundary conditions we have to include in the sum of Eq. 175
not only terms coming from localized charge distributions within the cell, but also terms
arising from close by periodic image charges.

Exercise [1pt]: Determine numerically the distance |r — R;|/a where the potential of
Eq. 175, has decayed to 1.d-14.

The second charge density p¢(r) is just the sum of the compensating Gaussians and is
shown in the lower panel of the next Figure. It is a smooth function and it can therefore
be represented with high accuracy by a modest number of plane waves. In addition the
Fourier transformation of a Gaussian can be calculated analytically,

7ot | 4F s expl— (/e exp(~ 1) =

ot Jy 4) O e el >6XP(—1’<”COS(9))_V1016XP< <kZa>2>

0-183

Hence the potential V¢ arising from p s 1s
| 4 ka\
Ve(r) = — Ziexp(Ik- R; — | = 176
0= L3 (Z exp (/K- (r - >>) exp ((%)) (176)

We have now calculated the potential V(r) = V,(r) 4+ V¢(r) arising from a set of point
particles under periodic boundary conditions. In many applications we want however
to calculate energies and forces. In this context we have to take into account that point
particles are not interacting with each self; i.e the total energy is given by

Z]R R

Evaluating the potential at all the positions R; would however give

Z;(V.(R;) + V¢(178
<Z r(R > Z |R R]] (178)

Taking out the self-interaction in the real space part (Eq. 175) 1s simple and one obtains

(IR; —R;
ZZ I JerfcllL R. | ’/a) (179)
J

(177)

j !

0-185

The sum over j in Eq. 179 runs over all localized charges in the system, the sum over i
over charges interacting with charge j. Remember that these interacting charges can be
periodic image charges. Taking the self-interaction out of the Fourier space part (Eq. 176)
is also not very difficult. We have just to subtract the potential of a Gaussian charge
distribution evaluated at the origin (cf. Eq. 171). The Fourier space contribution is thus
given by

E5 = %% 1—;‘ (ZZiZjeXp(Ik-(Ri—Rj))> exp (— (k;)) Zzz

k+#0 i,]
k
Y, o IS0 Pexp (— (>)) ALl (180)

Where S(k) is the structure factor S(k) =Y, Z;exp(—I/ k- (R;)). The Ewald method for
the energy consists thus of calculating the energy £ = E, + E¢ of Eq. 177 as a sum of a
real space term E, (Eq. 179) and a Fourier space term E; (Eq. 180). A similar formula
can be derived for the forces.

Let us now discuss the scaling properties of the Ewald method with respect to the number
of charges N in the system and the relation to the choice of the width a of the Gaussians.
Let us assume that the average number of charges per unit volume p. = N/Vol remains
constant while we are increasing the number of charged point particles. The real space

0-186

part E, has a linear scaling. For each charge we have to calculate all the interactions
with charges that are localized within a few a’s. Consequently there are of the order
of p.a’ such charges and the total scaling is Np.a®. In the Fourier space part, E r, the
number of plane waves we have to include for an accurate representation of the Gaussian
is proportional to Vol /a®> = N/(p.a’). For each plane wave k we have to calculate the
structure factor S(k). Hence the overall scaling is N?/(p.a’). If we enlarge N without
modifying a, the Fourier space sum of E; will finally dominate the computational cost

because of its N2 scaling. We can however enlarge a as we increase N. If a® o< /N then
the computational cost for both £ and E, grows as N 3/2

The Ewald technique achieves thus two remarkable things. It incorporates at virtually
no extra cost all the interactions with image charges under periodic boundary conditions.
In addition it allows us to evaluate the energy sum of Eq. 177 with a scaling that is less
than the trivial N? scaling. Even though the scaling is not quite as good as in other fast
methods the Ewald method has a small prefactor and beats usually other methods for small
and medium size systems.

0-187

7.6 Particle-Particle Particle-Mesh (P°M) methods

The P>M is another method to calculate the electrostatic energy (Eq. 177) of a system of
charged particles under periodic boundary conditions. As in the Ewald method the charge
is represented as the sum of a smooth part and localized charges. The expressions for this
later part, that 1s treated in real space, are as a matter of fact identical to the expressions
used in the Ewald method. What differs is how one treats the Fourier space potential of
Eq. 176. This part is not calculated analytically but numerically in the following way. The
smooth charge distribution p s is evaluated on a sufficiently dense grid. Then the potential
V¢ 1s calculated on the same grid by using the plane wave techniques described previously.
Finally the potential at the positions of the point charges R; is calculated by interpolation
methods from the values on the grid. Consequently E¢ is given by

1
E;= 5Zzivf(R,-)— —Zz? (181)

As in the Ewald method the last term is needed to cancel self-interactions.

Compared to the Ewald method the scaling of the Fourier space part is more favorable:
N log,(N)/(pca’) instead of N /(p.a’). Because of this favorable scaling of the Fourier
space part, it is not necessary to enlarge a as the system grows larger and the overall
scaling is V log, (N). The prefactor is however larger than in the Ewald method.

0-188

7.7 Multigrid for the solution of Poisson’s equation

Multigrid is the standard method for solving Poisson’s equation in a finite difference
scheme. For simplicity we will only consider the 1-dim Poisson equation

az
Using the simplest discretization of the second derivative Eq. 182 becomes
Vit = 2Vi+ Vioy = —4nh’p, (183)
Eq. 183 is a linear system of equations
Ax=y ; x=V,y=p (184)
Under periodic boundary conditions, the matrix A 1s given by
/ \
-2 1 1|
1 -2 1 |
| 1 -2 1 |
| |
| |
| e |
| 1 -2 1 |
| 1 -2 1|
|1 1 -2 |
\ /

0-189

The solution of a linear system of equations 1s equivalent to finding the stationary points

of .
xT(EAx —v) (185)

as can easily be seen by taking the partial derivatives of Eq 185 with respect to all the
components of x. Differentiating once more gives the Hessian matrix which turns out to
be A. It can be shown that the conditioning number grows quadratically as a function
of the lateral dimensions of the system divided by the grid resolution. Hence either very
large systems or very high grid resolutions lead to conditioning problems.

The elementary local iterative solution methods for Eq. 183 are

* The steepest descent method discussed previously
gi = Vip1 = 2Vi+ Vi1 +4nh%p; (186)
Vi=Vi+og; (187)

Exercise [2pt]: Find a discrete variational quantity (a function of all the V;’s) that

has the property that if one zeroes its gradient with respect to the V;’s, one obtains
Eq. 183. Hint: The functional derivative of [(%(%—‘;)2 —4nV (x)p(x))dx gives the
continuous Poisson equation 182.

0-190

 The Jacobi relaxation (which is equivalent to a steepest descent with oo =1/2).

~ 1
Vi == (Vi1 +Vie1) + 210, (188)

~

Vi=V (189)

* The Gauss-Seidel relaxation

1
Vi= o (Vier +Vier) +20h°p; (190)

e Red-black Gauss-Seidel relaxation

1

V= E(Viﬂ —I—V,-_l)—l—ZTEth,- for all even i (191)
1

Vi =5 (Vi1 +Vie) + 2mhp; for all odd i (192)

The three relaxation methods were written down in programming style, meaning that each
equation corresponds to a loop. Hence one works on all the indices of the first equation
before proceeding to the next. Thus the difference between Jacobi, Gauss-Seidel and red-
black Gauss-Seidel i1s a very subtle one. In the Jacobi method the solution is updated only

0-191

after all the old values were used for the calculation of V. In the Gauss-Seidel method
the new values are immediately used for the calculation of further new values. Hence
relaxations where the index 1s running from 1 to n are not equivalent to relaxations where
the index is running from # to 1, even though one relaxation type is in generally not better
than the other. In the red-black Gauss-Seidel all the even points are first updated using the
information of the odd points and then the odd point are updated using the information of
the already updated even points. The red-black Gauss-Seidel iteration is usually the most
efficient one for reducing error components that have a wavelength that is comparable to
the grid spacing. All the methods fail however badly for error components that have a
wavelength much larger than the grid spacing. The failure of the steepest descent method
was studied before. The failure of the relaxation methods is easy to understand. For small
grid spacings & the iterations have all the form

1
Vi= E(Vi“ +Vie1) (193)
respectively
~ 1
Vi= E(Viﬂ +Vio1) (194)

The value in the center is the average of the values to the right and to the left. On small
scales any smooth function is to first order a linear function and taking the average does
not modify a linear function. Hence the convergence becomes very slow for small 4. The

0-192

effect 1s demonstrated below on a grid of 32 grid points. The red curve represents the
original data V; and the green curve the smoothed data set V, = %(Vlurl +V;_1). For data
that are slowly varying over the grid spacing /& the smoothed curve is very similar to the
input curve, where as for a non-smooth curve both curves differ significantly.

1.5

le-14

T
input

T
input

5e-15

\ o /\ /\ .
0.5
-5e-15 -
J/
oL . -le-14 (.

-1.5e-14 -

-0.5

-2e-14 |- .

-2.5e-14 —

-1.5 L L L L L L -3e-14

0-193

What happens therefore if a relaxation (or steepest descent) method 1s used to solve Pois-
son’s equation with a small 4 1s the following. During the first iteration the convergence
is fast, since the short wavelength components, of the error are eliminated. These short
wavelength components have a wavelength A ~ 2h. As soon as the remaining long wave-
length components have to be eliminated the convergence becomes extremely slow. The
basic idea of multigrid is to eliminate these longer wavelength error components on a
hierarchy of grids whose spacing i matches the wavelengths under attack. The funda-
mental equation that allows for such an approach is the error correction equation. If we
have an approximate solution V' then the difference AV between the exact solution and the
approximate solution V fulfills as well a Poisson equation

V2AV (r) = —V?V —47p(r) (195)

since the right hand side, which is called the residue, can again be considered as some
charge density. Using these two ingredients we obtain the 2-grid algorithm:

1. Do a few (2 to 5) relaxations on the original grid. This will give an approximate
solution Vih and a residue

1
Rl = (" —2vih+vjil) — 4np; (196)

2. Transfer the residue Rffl to a grid with double spacing 24 and let’s call this residue

0-194

Rl-Zh. Since we have to cut the number of data into half, the simplest way 1s just to
select every second data point, i.e RiZh = Rgi This transfer from a fine to a coarse
grid 1s called restriction.

. Find the solution on the coarse grid for a Poisson equation where the charge density
1s given by R%h, 1.e. solve

Vil —ovA 4 v = (2h) R (197)
V2" represents the correction AV (r) of Eq. 195.

. Bring ViZh back onto the fine grid and add it to Vih The process of calculating a
quantity that was defined on a coarse grid on a fine grid is called prolongation. The
simplest prolongation scheme 1s to use on all the even grid points of the fine grid
the values on the coarse grid and to generate the values on the odd grid points by
interpolation from the neighboring even grid points.

. Unfortunately the potential that we have now obtained by adding Vlh and the pro-
longation of Vl-2h on the fine grid is not yet the final solution. the reason for this
is that the prolongation step introduces some small short wavelength errors. These
errors can be rapidly eliminated by a few (2 or 3) additional relaxation steps on the
fine grid.

0-195

We left it open how to find the solution Vizh on the coarse grid. Obviously we can again
use exactly the same procedure that we used for the fine grid by going to an grid with an
even larger grid spacing of 4h. Doing this recursively until we arrive at a grid with a very

small number of grid points, where the problem can easily be solved exactly, results in the

multigrid V cycle illustrated below.
h

h RELAX @ L -_»:4. RELAX
RESTRICT PROLONGATE
o A v ' RELAX
RELAX .\"\'\ --- ;l.-.>,4.
RESTRICT PROLONGATE
Q 4h
n RELAX @ V.. -e RELAX

RESTRICT PROLONGATE

ah \./
SOLVE EXACTLY

Exercise [1pt]: What is the complexity (i.e. the scaling of the numerical effort with respect
to the number of grid points) of the multigrid V cycle if we neglect the cost of solving the

equation exactly at some very coarse grid level and if we use a fixed number of relaxation
on each grid level?

0-196

PROJECT: A 1-dim multigrid program

The multigrid method can be applied to problems in one, two, three and more dimensions.
Here we will study its behaviour for the simplest 1-dim case with periodic boundary con-
ditions. For simplicity the length of the periodic volume can be taken to be one and the
charge density p is a sine function p(x) = sin(x27). Find the analytical solution for the po-
tential. Is the potential unique? Next, solve the problem numerically using the multigrid
method

 Discretize the interval with 256 grid points.
e Take random numbers as your initial guess for the potential.

e Write a subroutine that performs Gaus-Seidel relaxations and another subroutine
that calculates the residue(Eq. 196). Never set up the matrix of Eq. 184 explicitly
to calculate these quantities.

* Do a few Gaus-Seidel relaxations on the 256 grid. Monitor graphically how the
convergence rate slows down and calculate the residue after each Gaus-Seidel re-
laxation.

e Implement next a two grid method. Bring the residue from the 256 point grid to
a 128 point grid by the restriction procedure described in the lecture notes and

0-197

do Gaus-Seidel relaxation on the 128 grid to solve Equation 195 approximately.
Observe again how the convergence rate slows down when you are doing Gaus-
Seidel relaxations on the 128 point grid. Once the convergence rate saturates, add
the correction to the potential calculated on the 128 grid to the solution on the
256 grid. Before adding the two quantities on the fine grid use the prolongation
procedure described in the lecture notes with a simple linear interpolation to bring
the correction to the fine grid. Do 5 more Gaus-Seidel relaxations on the 256 grid
and look by how much the residue was reduced by this excursion to the 128 grid.

Replace the Gaus-Seidel relaxation on each grid level by a red-black Gauss-Seidel
relaxation and and replace the simple restriction scheme by the full weightening
scheme where . . .

R = ZRgi—l + ERgi + ZRgiJrl (198)
Now implement a true multigrid method where you have on the coarsest grid level
only 4 grid points. A major difficulty is to find convenient data structures that
hold the various quantities on the different grids. Since in the one dimensional case
memory 1s not problematic you can choose some simple but wasteful data structures
(where for instance you use the same amount of memory for each grid level). You
are however also invited to design some more efficient data structures.

0-198

e Determine how many multigrid cycles you need to reduce the norm of the residue
by 6 orders of magnitude both for the combination simple-restriction/Gaus-Seidel
and full-weightening/red-black-Gaus-Seidel. How many iterations would you need
to obtain the same error reduction if you performed only Gaus-Seidel relaxations

on the 256 grid?

e Even if the procedure has converged (i.e. if the residue 1s very small), you have
only an approximation to the analytical solution. This comes from the fact that the
second derivative operator was replaced by a finite difference formula. Determine
the difference between your numerical solution and the analytical solution.

0-199

PROJECT: Finite Difference Method for solving Laplace Equation

Introduction
The electric potential V in the absence of any charge, satisfies the Laplace equation. In a
two-dimensional problem, the corresponding two-dimensional Laplace equation is

IV (xy) IV(x.y)
ox? dy?

ViV (x,y) = =0 (199)

for all real (x,y) in region S of a plane. First, consider a region S that composed of all the
points (x,y) so that 0 < x < a and 0 <y < b. The boundary condition for this problem is
chosen to be a Dirichlet boundary condition, e.g., for all the points (x,y) on the boundary

C =9S of S, one has .
V(x,0)=V",
{ V(x,b) = V(0,) = V(a,y) = 0. (200

For simplicity, we choose @ = 1 and V° = 1, so the analytic solution as b — o is

2 SIN TTX
1% — Ztan! 201
(v,y) = tan (sinhny) (201)

Next, we limit the region § so that 1 <y < 2, the solution (201) remains unchanged while

0-200

the corresponding boundary condition on C, the boundary of S, is given by

(V(X, 1) _ %tan_l (simtx)7

sinh Tt

{ V(x,2)=Z2tan! (3B2L) (202)

sinh 27

\ V(an) — V(17y> — O

The purpose of this project is to numerically solve the equation (199) on the region S so
that 0 < x <1 and 1 <y < 2 with the Dirichlet boundary condition (202). The numerical
solution 1s then compared to the exact solution (201). An analysis for the error of the
numerical solution is also requested.

To solve equation 199 numerically, one first discretes it using the finite difference method.
One covers S with an equidistant grid with grid spacing /& along both sides of S. In other
words, each of the intervals [0, 1] (for x) and [1,2] (for y) is divided into N sub-intervals

with the length

1
h=—. 203
N (203)

The potential V (x,y) is then calculated on the grid points using the relaxation method. The
potential V (x,y) at a grid point with coordinates x = ih and y = jh, is referred to as V; ;. In
the relaxation method as mentioned for one-dimensional problem in the lecture notes, the

0-201

0.06
0.05
0.04
0.03
0.02
0.01

0.08
0.06
V.o 004 -
0.02

-0.01
-0.02

Figure 2: Exact solution of the equation (199) on the region S : x € [0, 1],y € [1,2]

potential at each grid point is obtained from the average \N/l ;j of the potential values over
the corresponding neighbors. To this aim the ordinary Gauss-Seidel relaxation

Viy =T, 204

(or the red-black Gauss-Seidel) is iterated until the potential at each grid point converges
to some value. Using more neighbors in the averaging V; ; procedure, gives more accurate
results. In this project we will use three different types of averages. To speedup the

0-202

convergence, one can replace the (red-black) Gauss-Seidel relaxation with the successive
over-relaxation

Vij=0Vii+ (1 -0V, (205)

with a relaxation factor of ® = 2/(1 + sinmh) (note that the Gauss-Seidel relaxation (204)
corresponds to ® = 1).

Finally, the numerical solution obtained will be compared with the exact solution (201)
by analyzing the norm of its error defined by

Iculated) xact)] 2
|€||_\/sz[calculate ij act)} . (206)

Detailed tasks

.

Show, using a Taylor expansion, that we can discretize the Laplace equation (199)
on the grid to obtain the approximate potential

Vij=Vij+O(h*)
where the average is obtained from the ’cross’ average

~

1

0-203

2. Write your code to do successive over relaxation using the ’cross’ average with
random initial guess to calculate the potential V inside S. Do the error analysis, i.e.,
using the formula (206), plot on a log-log scale ||e|| as a function of /& and find the
dependence of ||e|| on h. Note that this global error is two orders of magnitude
smaller than the [ocal error obtained from the Taylor expansion in which the exact
values of the function at the adjoining sites are known.

3. Repeat the steps 1 and 2 with the ’corner’ average

~

1
Vij=V5= 1 (Vit1 j1 + Vit j1 +Vig1 j—1 +Vie1 j—1) (208)
and compare the error ||e|| of the method using the ’corner’ formula (208) with that

using the ’cross’ formula (207).

4. We now use a certain linear combination of two averages above

~ 4 1
— VO — + X
Viaj_vi,j_gvi,j_l_gvi,j' (209)
Modify your code to implement the combination (209), calculate the error ||e||, and
show (quantitatively) that this combination improves the accuracy of the numerical
calculations, both by a Taylor expansion method and by actual numerical calcula-

tions.

0-204

5. Effects of the finite difference approximation for the boundary C. The boundary C
used in the above problem can be exactly represented by the ’square’ grid chosen.
In a problem with a different geometry of C, for example, a circle, there are errors
coming from the fact that C can not be exactly represented by the ’square’ grid so
one needs another grid.

Consider the electric potential V within two concentric conducting cylinders with
radii a and b (a < b) and very large lengths. The potential V is kept to be V| on
the inner cylinder and V, on the outer cylinder. Due to the translation symmetry
along the axis of the two cylinders, chosen to be the z axis, the problem can be
considered as a two-dimensional problem on the xy plane. Fora =1/2,b =1 and
Vi = 1,V, =0, the exact solution of the potential 1s then

1
V(6y) =~ /a2 42 (210)

For this problem, you are asked to

e Change the boundary condition to reflect the new geometry of the problem
and do the relaxation for the sites in the region 1/2 < y/x*+y? < 1. Note
that with the symmetry of the geometry, you can relax only one quarter of the
coordinate plane with appropriate treatment for x = 0 and y = 0. Do the error

0-205

Figure 3: The cross section of the two cylinders, which is represented on the xy plane.

analysis for three different averages (’corner’, ’cross’, and ’combination’).
Explain the result for the error obtained.

» Discrete the Laplace equation in polar coordinates system and solve the prob-
lem numerically in 1D in such a way that the edges are represented exactly.
Determine the errors obtained theoretically and numerically.

0-206

7.8 Solution of Poisson’s equation in spherical coordinates

In spherical coordinates, used typically for electronic structure calculations of atoms, the
solution of Poissons equation 1s easy. If the charge density is given in terms of radial
functions times spherical harmonics,

p(r') =Y prw(r)Y m(¥) 211)

1 17
— 471 < Y* ~/ Y, ~/ 212
’l’—l’/’ ;21+1rl>+1 l,m(r) [’m(l') ()
that the potential is given by
4T R 1 r °0 1
V(r) = ZZ 1 Ym(®) (W /0 Pum ()2 dr + 7 / p,,m(r’)rll—ldr’) (213)
Jm

This means that the potential can be obtained by simple outward (from O to r) and inward
(from oo to r) radial integrations.
Exercise [1pt]: Use Gauss’s law of electrostatics to verify Eq. 213 for the case [= 0.

0-207

7.9 Standard non-recursive and recursive interpolation

Standard Interpolation

T T T

Recursive Interpolation

LT T e

0-208

7.10 Solution of Poisson’s equation using interpolating scaling func-
tions

The previous method was only applicable if the angular part of the charge density can be
represented by a reasonably small number of spherical harmonics. What is still missing
1s a method that can solve Poisson’s equation with free boundary conditions for arbitrary
charge densities. Remember that free boundary conditions are obtained if one solves the
integral equation Eq. 164.

Let us first discuss the construction of interpolating scaling functions. This construction
is closely connected to the question of how to construct a continuous function f(x) if
only its values f; on a finite number of grid points i are known. One way to do this is
by recursive interpolation. Given a data set that is defined on all integer points, we first
interpolate the functional values on all the midpoints by using for instance the functional
values of two integer grid points to the right and of two integer grid points to the left of
the midpoint. Four functional values allow us to construct a third order polynomial and
we can then evaluate it at the half integer midpoint. In the next step, we take this new
data set of functional values at integer and half integer points, which is now twice as large
as the original one, as the input for a new midpoint interpolation procedure. This can be
done recursively ad infinitum until we have a quasi continuous function.

For linear interpolation the formula for the functional value f; > in the midlle between

0-209

grid points fo and fi reads

1
fijp= 5o+ 1) (214)
and for third order interpolation it reads
1
Jip= E(—f—1+9fo+9f1—f2) (215)

Let us now show, how this interpolation prescription leads to a set of basis functions.
Denoting by the Kronecker 0;_; a data set whose elements are all zero with the exception
of the element at position j, we can write any initial data set as a linear combination
of such Kronecker data sets: f; = Y ; f;0;—j. Now the whole interpolation procedure is
clearly linear, i.e. the sum of two interpolated values of two separate data sets 1s equal to
the interpolated value of the sum of these two data sets. This means that we can instead
also take all the Kronecker data sets as the input for separate ad-infinitum interpolation
procedures, to obtain a set of functions ¢(x — j). The final interpolated function is then
identical to f(x) = ¥ ; fj¢(x — j). If the initial grid values f; were the functional values
of a polynomial of degree less than four, we obviously will have exactly reconstructed
the original function from its values on the grid points. Since any smooth function can
locally be well approximated by a polynomial, these scaling functions ¢(x) are good basis
functions.

0-210

The first construction steps of an interpolating scaling function are shown in Figure below
for the case of linear interpolation. The initial Kronecker data set is denoted by the big
dots. The additional data points obtained after the first interpolation step are denoted by
medium size dots and the additional data points obtained after the second step by small
dots.

Continuing this process ad infinitum will then result in the function shown in the left panel
of Figure below. If a 7-th order order interpolation scheme is used the function shown in
the right panel of Figure below is obtained.

1 I I I

| 1 | | | | |
'scf8’

I’scf2’ |
0.8 i

0.6 -
04 .

0.2 .

0 | | | | | | |
Exercise [1pt]: Plot the scaling function obtained by third order interpolation (Eq. 215).

0-211

By construction it is clear, that ¢(x) has compact support. If an (m — 1)-th order interpola-
tion scheme is used, the support interval of the scaling function is |[—(m—1);(m—1)]. The
important property of the interpolating scaling functions is that they vanish at all integer
arguments except at the origin, i.e for all integers i

(i) = 6; (216)

If we have now the values of a charge density pil,i2,i3 on a 3-dimensional grid with grid
spacing i we can very easily construct a continuous charge density p(r)

p(r) = ¥ pirzis 00/h—i1) 0(y/h — i2) o(z/h —i3) 17)

i1,i2,i3

For simplicity we will in the following set the grid spacing equal to 1.
Exercise [2pt]: Show that the discrete and continous monopoles and dipoles are identical,

l.e
[x| av[dazpm) = ¥ puns (218)
- - - i1,i2,i3

/ dx/ dy/ dzzp(r)=) 3pina (219)

i1,i2.,i3

0-212

if the relation between p(r) and pi1 i3 is given by Eq. 217. Hint: Derive first [¢(x)dx =1
from the fact that a constant function can be represented exactly by any scaling function
basis set.

The potential on the grid point j1, j2, j3 of same grid that was used for the charge density
1s then given by

S L o x—il)0(y—i2) 0(z — i3
le,j2,j3 = Z Pil,i2,i3 / dX/ dy/ dZ (I)() (I)(y) (I)()
i1,i2,i3 oo S TS/

x—j1)2+(y—j2)* 4+ (z— j3)?

Z Piti2.i3Fi1—j1,i2— j2,3— 3 (220)
i1.02.i3

Exercise [1pt]: Using the above definition of the filter I as an integral show that it indeed
depends only on the difference between two indices, e.g. only on il — jl and not on il and
j1 separately.

Since the above expression for the potential V1 j» ;3 1s a convolution it can be calculated
with FFT techniques at the cost of N°log(N?) operations where N is the number of grid
points. It remains to calculate the values of the filter Fi1_ 12— 23— 3.

Calculating each of the N filter elements as a 3-dimensional numerical integral would be
too costly. The calculation becomes however feasible if the 1/r kernel is made separable.
This can be achieved by representing it as a sum of Gaussians. The representation is best

0-213

based on the identity

1 2 > 26
- —r xp(2s)—|—sd 271
r U /_m ‘ ’ (221)

Discretizing this integral we obtain
1
— =Y we (222)
o

With 89 well optimized values for w; and v; it turns out that 1/r can be represented in
the interval from 10~ to 1 with an relative error of 10~%. The 3-dimensional integral in
Eq. 220 becomes then a sum of 89 products of 1-dimensional integrals.

(x—i1)d(y —i2) 0(z —i3)
/dx/dy/dz Va0 2P+ 32

ZWZ/ dx [dy [dzote—i1) ol —i2) §(z — i3) MU HOZRIHGR)

ZWz (/dX(l) —il)e M7l) (/dy(l) —i2)e W02) (/dzcb z—i3)e M 13))

Using 89 terms in Eq. 222 we have thus to solve just 89N one-dimensional integrals which
can be done extremely rapidly on a modern computer. The main cost are thus the FFT’s
required to calculate the convolution with the kernel Fj1_j1 20— 2.i3—j3.

0-214

How to do convolutions

We consider a real input data set X; of N items where i = —N/2,...,N/2—1 and areal filter

F; where i = —M/2,...,M /2 — 1 We want to calculate the one-dimensional convolution
M/2—1
Yi=) FXju (223)
I=—M/2

If the filter 1s of short length, 1.e. if M 1s small compared to N then it is most efficient
to directly evaluate the sum in equation 223 for each value of j. The numerical effort
is then obviously N x M. If M is however equal to N the scaling becomes N> and the
FFT techniques explained below are more efficient for large N since the scaling becomes
Nlog(N). It is clear from Eq. 223 that the data set Y is larger than the data set X. If both
the data and the filter have data in the interval i = —N/2,...,N /2 — 1, then the output data
are in the range i = —N + 1,...,N — 2. For simplicity we double the interval length and
consider the interval i = —N,....N — 1.

To apply the Fourier method we have to calculate the discrete Fourier coefficients x; and
fq of the data sets X and F. The Fourier coefficients are obtained from the doubled data
sets where all the coefficients in the interval i = —N +1,...,—N/2 — 1 and in the interval

0-215

N/2,...,N—1 are set to zero. Denoting 2N by N we obtain

1
= — — kv X 224
X N;exp(<)Xy (224)
1 —27tl
szﬁZGXp(5 kv)F, (225)

2wl
X; = — ki 226
Zk:exp(= i)xy (226)
2l
Fi =) exp(—-ai)fy (227)
q

Exercise [1pt]: Verify that plugging in the definition of the Fourier coefficients x;. into the
above formula for X; gives back the original data set X;
Inserting these expressions into Eq. 223 gives

2l

Y;i = Z Z Zexp ql fqexp(N

k=— Nq——Nl——

(J+1)x (228)

0-216

_ 2y LT e — = KD (229)
- NZex 2’” oL (230)
_ 271:[(231)

The previous line shows that the Fourier coefficients of the output data set Y are the prod-
uct of the Fourier coefficients of X and F. So we have to form these products and then
to do another Fourier transform to obtain the data set Y. All the Fourier transformations
can be done using the Fast Fourier transformation (FFT) algorithm at a cost of Nlog(N)
operations.

In the mathematical literature sums in Fourier transformation formulas typically run from
—N to N or N — 1. In all numerical FFTs indices run from O to N — 1. For all the real
data this just implies a shift whereas for data in Fourier space it means that the negative
frequencies are in the second half of the data set as shown below for the case of N=4:

X0,X1,X2,X3,X4,X-3,X_2,X_]

0-217

8 Integration methods

8.1 1-dim Integration Methods

Numerical integration approximates an integral / = | ab f(x)dxby afinite sum S =Y ; f(x;)w;,
where w; are the integration weights and x; the integration points. For best efficiency one
tries to get the highest accuracy with the smallest number of integration points. The effi-
ciency that can be obtained depends on two factors

* The smoothness of the function to be integrated, A function is called smooth if
many continuous derivatives exist.

— the smoothness in the interior of the integration interval

— the behavior of the function at the boundaries of the integration interval, i.e
whether the function and the lowest derivatives vanish. If we artificially ex-
tend the integration interval to [—oo : oo| by putting the function outside the
original integration interval |a : b] to O this behavior is again described by the
smoothness properties of the function.

* The choice of the integration grid points x; and their weights w;

0-218

As an illustration let us consider the following family of functions shown below

Jm(x) = (1 ——)" (232)

that we want to integrate between its two zeros at —/m and /m. At the zeros m — 1
derivatives vanish as well.

1 T T T T L T T T T

m=1

m=3 --------
0.8 I~ m:4 ,,,,,,,,,,,,, -1
0.6 i
0.4 .
0.2 i

O ot T]

_02 | | | | | | | | |

-25 -2 -15 -1 -05 0 0.5 1 15 2 2.5

Integrating the above function between —+/m and /m is equivalent to integrating over the

0-219

whole real axis the function

0 else

The above family of functions becomes smoother with increasing m since m — 1 deriva-
tives are continuous everywhere.

The errors with the simplest integration scheme, namely an equally spaced grid with w; =
1 are shown below. It is clearly seen, the smoother the function, the faster this simple
integration scheme converges.

Exercise [1pt]: Guess which function can be integrated from —oo to oo with the smallest
number of equally spaced integration points and w; = 1?

0-220

ootk m
0.0001 — i
1e-06 ~ i
1008 | :

le-10 il

error

le-12 | i
le-14 - il
le-16 7]

le-18 T

1e20 L— S SRS —
10 100 ~ 1000] 10000
number of integration points

A simple equally spaced grid is optimal for the integration over the entire space (—oo to
o) of an analytic function, or for the integration over the periodicity volume of an analytic
periodic function. Optimality in this context means that exponential convergence can be
obtained, i.e a convergence that is faster than any power with respect to the number of
integration points. The exponential convergence follows from the Paley-Wiener theorem.

0-221

If we consider the Fourier development of a function that is periodic in the interval |0 : 1]

_ i Cr eIZTth

k:—oo

(234)

the Paley-Wiener theorem tells us that the Fourier coefficients c; decay exponentially for

large |k| if the function is analytic. Hence we have

1N—1 1N1

- Z _]/N Z Ck_ Z eIQTEk]/N
N j=0 k=—o0
Since
1 Ni omkjv _ {1 if kis a multiple of N
N = 1 0 else
we get

1N1

_Zf]/N _CO_l'Z CmN‘|‘C—mN)

(235)

(236)

(237)

Since cg is the exact value of the integral, the second term is the error term. As asserted

by the Paley-Wiener theorem it decays exponentially.

0-222

Exercise [2pt]: Demonstrate numerically exponential convergence for an analytic peri-
odic function. A possible choice is

1
/ exp((sin(mx))?)dx = 1.7533876543770903957 (238)
0

where T = 3.1415926535897932385

For a non-periodic function that is not perfectly smooth the following techniques may be
applied:

* Find a transformation that makes i1t smoother

e Use weights w; that give better convergence for non-smooth integrands. Typically
the worst non-smooth places are at the upper and lower integration limits. So the
weights should be modified close to the integration limits.

e Use in addition to optimal weights non equally spaced integration points (Gauss
integration)

The first two techniques will be illustrated in the following

0-223

Integration of a radial wave-function after a transformation

There are two problematic regions for the integration of a radial wave-function such as the
Is hydrogen wave-function e~". Near the origin the wave-functions have a considerable
variation and high derivatives are important. In the tail region we have the problem that
the wave-function extends to rather large radii without much variation. Consequently we
need a transformation that stretches the wave-function near the origin and that compresses
the wave-function in the tail region. The stretching near the origin will introduce small
weights near the origin. As a consequence the quantity to be integrated which is the
product of the transformed function and the weight will tend to zero. A transformation
with this property 1s

r= f(x) =aexp(ox) —a (239)

The constant a determines how much the function is stretched near the origin. o deter-
mines where the function will start to drop to zero. An integral over a radial function ¢
can then be written as

| owar= [ot ar= |

0

oo

©_ dr

0 dx
(240)

where we have introduced the transformed function ¢(x) = ¢(f(x)) The function ¢(x)
resulting from ¢(r) = exp(—r) by itself and multiplied by the weights is plotted below.

0-224

o (Mdr= [80 Shdx= [dr)aaexp(an)ds

4.5

phi transformed times weight

4+ \ .

35 F \ .

3t \ .
\

2.5_ \ -

2+ \ .

15| \ -

1 \ _

05 T

0

The integration error resulting from a numerical integration of ¢ and ¢ is shown below.
10 ———— — —

1r transformed integral
0.1 _

0.01 _
0.001 _

0.0001 _
le-05 i

1le-06 i

integration error

1le-07 i

1le-08 —

1le-09 i

le-10 e
10 100 1000 10000

number of grid points

Exercise [2pt]: Find a transformation such that [~ ﬁdx = Tt can be calculated with an

error of less than 10710 with the smallest possible number of integration points.

0-225

Weights for numerical integration of functions on short intervals

Let us assume that we want to integrate a function f(x) and that we know the functional
values f; = f(x;) on several equally spaced values x; = xo + ih. An integration formula
gives us an approximate value for the integral under the form of a weighted sum of the
functional values f;.

/ ") dx ~ h f fow, (241)
X0 i=0

The basic principle for deriving numerical integration formulas is analogous to the one
used for numerical differentiation. First find a polynomial approximation to the func-
tion and then integrate the polynomial. The lowest order integration formula, called the
trapezoidal rule, is obvious.

/ f(x) dx = Gfo + %fl) i (242)

It is the area of a linear function that passes through the two points (xo, fo) and (x1, f1) as
shown below

The integration weights w; for high order integration formulas are again best calculated
by symbolic computation. The following Mathematica program gives the weights for 4
integration points

f[x_]:=Evaluate[InterpolatingPolynomial [{{0,y0},{1,ypl},{2,yp2},{3,yp3}},x]]
tt=Simplify[Integrate[f[x],{x,0,3}]]

The output 1s shown below

3 (yO + 3 ypl + 3 yp2 + yp3)

The error analysis 1s also analogous to the case of the finite difference formulas. One
considers the Taylor expansion of the function to be integrated. The formula will integrate
exactly the first m 4 1 terms of the Taylor expansion.

Table 2: Integration coefficients w; (Eq. 241) on short intervals of various order.

wo Wi %) 2%} Wy Wws We w7
h’ 1/2 12
> 3/8 9/8 9/8 3/8
h’ 95/288 125/96 125/144 125/144 125/96 95/288
n 5257/17280 | 25039/17280 | 343/640 | 20923/17280 | 20923/17280 | 343/640 | 25039/17280 | 5257/17280

0-227

Weights for numerical integration of functions on long intervals

The integration formulas for short intervals were motivated by the assumption that the
function can be represented over the whole interval by a single Taylor expansion. Such an
assumption does generally not hold true for functions found in science and engineering
that extend over a longer interval. Such functions have typically a different behavior in
different regions of the integration interval. Even though a global Taylor expansion is
not adequate, we can assume that Taylor expansions for smaller local subintervals are
accurate. One could thus subdivide a large interval into smaller subintervals and use the
integration formulas derived for short intervals in each subinterval. This would give the
strange result that different points in the middle have different weight, even though all
points are ’equal’. This artifact can be avoided if one uses the polynomial constructed
over several grid points to integrate only the interval between 2 grid points. This is shown
schematically below for the points close to the left integration boundary. To integrate
an interval denoted by a certain color, one uses a polynomial that goes trough the points
below (or above) the bar with the same color.

0-228

The integration weights obtained in this way are listed below

Table 3: The coefficients w; for integration formulas on long intervals of various order.
Listed are only the coefficients for the left integration boundary, the coefficients for the
right boundary are identical, e.g. w,,, = wq, w,,—1 = wy. etc. The integration weights w; in

the middle part are all equal to 1.

wWo Wi 1% ws3 Wy Ws Weg w7
n 12 1 1 1 1 1 1 1
n 1/3 31/24 516 25/24 1 1 1 1
h 14/45 679/480 139/240 58/45 71/80 163/160 1 1
h’ 41/140 | 6899/4480 | 3247/15120 | 226109/120960 | 1291/3780 | 159811/120960 | 2749/3024 | 24467/24192

0-229

The figure below shows the error for all the 4 sets of integration coefficients of Table 3

001 ' oo ' oo ' oo ' oot

0.0001 | + -

1le-06 |- + -

le-08 - + .

error

le-10 | + X
le-12 -

le-14 K X 5% -
s i X 0

W R B K O

L | L L

C

le-16 b—— ol — 1 —
1e-06 le-05 00001 0.001 0.01 0.1

0-230

Exercise [2pt]: Derive the integration weights of order i’ in Table 3
Hint: The following Mathematica program

f[x_]:=Evaluate[InterpolatingPolynomial [{{0,y0}, {1,ypl}, {2,yp2},{3,yp3}},x]]
Simplify[Integrate[f[x],{x,1,2}]]

gives this output

-y0 + 13 ypl + 13 yp2 - yp3

and the program

f[x_]:=Evaluate[InterpolatingPolynomial [{{0,vy0}, {1,ypl}, {2,yp2},{3,yp3}},x]]
Simplify[Integrate[f([x],{x,0,1}]]

gives this output

9 yvO + 19 ypl - 5 yp2 + yp3

0-231

8.2 High Dimensional Integration Methods

The one dimensional product formulas can be generalized to higher dimensions. For an
analytic function f we obtain the following integration formulas and error estimates of a
regular grid of n¢ = N grid points in an d-dim space.

e Simple summation on regular grid
IR R TR >
X X X — — . —
1 2. d o, -

e Trapezoidal rule

/1dX1/1dX2 /1dxdf —lf Z Z ARy o)
A 0 0 0 : : ld - ld n7n7-..n N2/d
(244)

where w; 1s 1/2 for i = 0,n and 1 for all other values of i.

» Going to ever higher order integration schemes gives an error of O(Y, d) where [
is the order of the one dimensional integration scheme. For large d th1s error will
decrease very slowly.

0-232

So the problem is that these product formulas give very poor convergence with respect to
the total number of grid points in a high dimensional space. Another disadvantage 1s that
it 1s very difficult to check convergence. One cannot easily add some more grid points
to check the convergence. Unless one throws away the old result one has to double the
number of grid point in each direction, which will lead to a increase in the total number
of grid points by a factor of 2¢.

For these reasons Monte Carlo Integration is frequently recommended for high dimen-
sional integration. Given a sequence of random numbers X; the integration formula is

1 1 1 IR B G
/delfo dxz.../o dxdf(x)—ﬁi;f(xi)+0(ﬁ), (245)

The error term is not a strict error bound, but only an estimate. Its form comes from the
assumption that the integral value has a normal distribution. This 1s fulfilled according to
the central limit theorem in the limit of large N. The standard deviation G is given by

o=+\/<fr>—<f>2 (246)

where

| AR 5 1S
<f>=5) &) <[>=5) fE) (247)
=1 i=1

0-233

Exercise [2pt]: Show numerically that the result of a Monte Carlo integration of fol xdx
has a normal distribution

The Convergence of the Monte Carlo method is too slow to be useful in practice unless
the variance of the function is very small from the beginning. Sometimes it is possible
to reduce the variance of the integration problem by what is called importance sampling.
For importance sampling we need to find a positive function p(x) that has about the same
shape as the function f to be integrated and we normalize it to one ([p(x)dx =1).

g b fx)
f(x dx:/ p(x)——=dx (248)
/a () a (>p (x)
The new function % has a lower variance and the above integral can be approximated
by
b—a ¢ :
n j=1 P (yj)

if the random points y; are now distributed according to the distribution p(x). The standard
random number generators generate a sequence of numbers that are uniformly distributed
in the interval |0 : 1], i.e. p(x) = 1 in this interval and p(x) = O outside this interval. A ran-
dom number sequence that is distributed according to another distribution can frequently
be obtained in the 1-dim case by applying a function y on the output of a standard random

0-234

sequence x;.
3 =3() (250)

y; is then distributed according to 1/[y’|. If one wants a certain distribution one has conse-
quently to find the function y whose reciprocal of the derivative will give this distribution.
The situation is illustrated pictorially below.

p(y) 0 A X 1 x

Exercise [1pt]: Write a subroutine that gives random numbers that are exponentially dis-
tributed in |0 : o]

0-235

Quasi-random integration points

The slow 1/+/N convergence of the Monte Carlo integration comes from the fluctuations
in the density of the random points used as evaluation points. It would be desirable to
have a more uniform coverage of the integration volume. Such sequences exist and are
called quasi random numbers, or low discrepancy sequences. Below, the first 1000 points
of a random and and of quasi-random sequence are contrasted.

1

T+ + 4 T+ FT T+ A T 1 PR R K

0.9 T 409kt

+
o + I +F +++

08 F, " 0.8 [+t [+ ot

1 + N + +
+ ., + +
0.7 ; + 7 ST A + T = f + + 0.7 ;ﬁ +++ + I T+ +
+ + o+

+ + + +
06 |, « ++ 0.6 F+ o, & +a T an TeTE

L + n

+
| - + + + ++ -
0.5 ++ ++ " +++ + +++ +++ e R + + + 0.5 + +

+H +
+ + + + |
04 Ha+ L Wt TH 04 e, L TR T
T + + + + +

+
+ & f + 4+ + 4 S+ + +

i F o+ HoH 03 R T4 M +p T4 oy o T

+

03 + +4

+ ot A
+
++4¢+#*ﬁi+

I+

0.2 0.2 ¢

+

+

+

St

+
++

0.1 [it T+ L R 401+

£, + + + o+ +
+ o W +% + + +*
BT U e o BT R A A IS Fi+ F 0 + P T

0 01 02 03 04 05 06 07 08 09 O 236 0 01 02 03 04 05 06 07 08 09

d
With quasi-random integration points a convergence rate of % can be obtained for

smooth functions, where d is the dimension of the integration space. Conceptually the
simplest low discrepancy sequence 1s Halton’s sequence. We write the counting numbers
0,1,2,3,... first in base 2

0,15,10,,115,1005,1015,110,. ... (251)

then in base 3
0,13,25,103,115,125,203, ... (252)

then in base 5, and so on through the first d primes. Then each of these representations
of the counting number is reversed to obtain a number in [0 : 1[. So, for example the
sequence coming from the base 2 representation 1s

0,0.1,,0.01,,0.11,,0.001,,0.101,,0.0115, ... (253)
while the base 3 sequence gives

0,0.13,0.25,0.015.0.115,0.215,0.025, ... (254)

From the construction it is obvious that this sequence fills space in a rather uniform way.
A very powerful sequence that can be used for integration in spaces of dimension of up to

0-237

roughly 30 1s Sobols sequence, which is based on very sophisticated mathematics. Even
though 1t has the same asymptotic convergence rate as Haltons sequence, it has smaller
prefactors in the error term. The first 1000 points of the Sobol sequence were shown on
the previous page. When integrating discontinuous functions, quasi random sequences do
not perform much better than random sequences.

The fact that at present there exists no satisfactory scheme to combine quasi-random se-
quences with importance sampling limits the use of quasi-random sequences in physics.

0-238

9 Monte Carlo methods

A wide variety of simulation methods i1s denoted by Monte Carlo methods. The only thing
that all these methods have in common is that they are using random numbers in some way.
Random numbers generated by a random number generator on a computer are numbers
that are equally distributed in the interval [0 : 1) and that do not exhibit any recognizable
pattern. Since they are generated by a deterministic procedure, there is of course some
pattern, but since the pattern is well hidden it should not matter in a simulation and the
computer generated random numbers should behave like truly random numbers, 1.e. they
should represent a completely unpredictable sequence of numbers. The simplest and most
widely used type of random number generator is the linear congruential operator which
generates a sequence of integers /; where

Iiy1 =mod(al;+c,m) (255)

For properly chosen integers a and ¢ the sequence will have a period of m, where m is
typically the integer word size of the machine, i.e. m = 232. The corresponding real
random number in the interval [0 : 1) is simply obtained as I;/2°2.

The Metropolis algorithm plays a central role in most Monte Carlo methods. We will first
discuss its use for the generation of distributions in classical statistical mechanics.

0-239

High dimensional integrals in physics

High dimensional integrals have to be evaluated in various contexts to treat many-body
systems. One example is the quantum mechanical energy expectation value E of a many-
electron wave function ¥(ry,rs,...,ry)

Eom = /drl,drz, o dry W (ry, 1o, ..., Ty) HY (11,12, ..., TN)

where H 1s the many electron Hamiltonian. Another example 1s the thermodynamic en-
ergy expectation value E of a classical many body system

1
——E(I‘l,l’z,...,l’N)
[dry,dr;,....drye %7 E(ry,ra,...,TN)

1
——=E(ry1,rn,...r
fdrladrz,...,drNe kpT (ry,r2 N)

<E>=

where E (1,12, ...,Ty) is the potential energy surface, T the temperature and kg the Boltz-
mann constant. For large values of N all the previously discussed methods will fail in
evaluating these integrals. In both cases the integrand is virtually zero in the entire high
dimensional space except in a subvolume that is vanishingly small. It is extremely un-
likely that either a random or quasi random point will fall in such a subvolume. Hence
a random or quasi random integration will give the wrong value of zero even for a large
number of random integration points. The only class of methods that works under such
circumstances are the Monte Carlo methods.

0-240

9.1 The Metropolis algorithm

The Metropolis algorithm is the standard method to generate random points with a certain
distribution in high dimensional spaces. Since a high dimensional random point corre-
sponds generally in physics to the configuration of some system (e.g. all the positions of
a many particle system) we will use the word configuration rather than random point and
we will denote such a configuration by X. The vast majority of the total configurational
space of a many particle system corresponds to unphysical configurations where for in-
stance 2 atoms are very close to each other. This results in extremely high energies that
contribute for instance virtually nothing to a Boltzmann distribution at room temperature.
Importance sampling, 1.e. creating distributions that sample only the low energy part of
the configurational space is therefore essential.

The Metropolis algorithm 1s based on a Markov chain. In a Markov chain the next config-
uration X' is obtained from the present configuration X by a certain move that is character-
ized by a transition probability 7 (X’ < X). The probability Py(X;,X>,...,Xy) of finding
a certain sequence of configurations is therefore given by

PN(X1 ,Xz, ...,XN) = T(XN — XN_l)...T(X3 < XQ)T(XQ < Xl)Pl (Xl) (256)
where the transition probabilities are normalized

YT(X'+X)=1 (257)
X/

0-241

and where P;(X) is an arbitrary distribution. For a truly random (i.e. non-Markovian)
sequence this probability would be given by

Py(X1,X2,....Xn) = P1(X1)P1(X2)...P1 (Xy) (258)

For Markov processes it 1s convenient to introduce the notion of a walker. Instead of say-
ing that one configuration is obtained from another one says that the walker goes from
one configuration to another. The concept of a walker does not in any way modify the
mathematics, it just gives a more intuitive description of a Markov process. The simplest
example of a Markov process is a random walk on a 2-dim square lattice. Each node rep-
resents a configuration. At any step the walker can jump to any of its 4 nearest neighbors,
i.e. T(X' + X) = 1/4, independently of which site he visited before. The walker behaves
in this example like a drunken sailor who randomly walks from one intersection to the
next in a city.
Let us now introduce an ensemble of walkers together with the function P(X,#) which
gives the probability of finding a walker at configuration X at Markov step ¢. The probabil-
ity P(X,t+ 1) is then given by P(X,7) plus the gain ¥ x» T (X < X")P(X’,¢) minus the loss
Y T(X"+ X)P(X,t). Once equilibrium has been reached P(X,t+ 1) = P(X,t) = P(X)
and hence

Y T(X' < X)P(X,1) =) T(X < X")P(X't) (259)

X' X'

0-242

This equation is satisfied under the conditions of a detailed balance where
T(X' +—X)PX)=T(X «< X"P(X") (260)

Like in molecular dynamics there is an equivalence in Monte Carlo methods between en-
semble averages and time averages. Unlike in molecular dynamics there 1s no continuous
time variable, but the discrete "time’ variable ¢ that denotes the #-th Markov step takes over
the role of the time variable in molecular dynamics. Our equilibrium distribution P(X)
gives the probability of finding a system in configuration X in an ensemble of systems.
Numerically we rather take time averages by following the movement of one walker and
so P(X) is also the probability for finding a walker at configuration X. Since the distribu-
tion of walkers P(X,?) tends to P(X) we have

T

1
P(X)=lim =) P(X,t) (261)
T—eo T t=1

The transition probability in a Markov process consists of two parts: a trial step probability
My’ x and an acceptance probability Ay’ x

T(X/ — X) = (DX’,XAX’,X (262)

0-243

Since Wy x’ is required to be symmetric, 1.e. Wy’ x = Wy y the detailed balance condition
(Eq. 260) gives
Ay x _ PX')
AX,X/ P(X)

The Metropolis acceptance prescription accepts a trial step if the probability of the new

configuration X' is larger than of the old configuration X and accepts it with a probability

% in the opposite case:

(263)

(264)

1 if P(X") > P(X)
Ay x =y P if P(X') < P(X)

That the above prescription satisfies Eq. 263 can easily be seen by considering the two

possible cases. If P(X’) > P(X)

Axix 1 P(X")
AX,X/ P<X) P(X)

If P(X') < P(X)

Axx _ Px) _ P(X')
Axx 1 P(X)

Accepting with a certain probability is done in the following way numerically. A random
number, equally distributed in the interval [0 : 1], is generated by calling a random number
generator. If this random number is less than % the step 1s accepted, otherwise it is
rejected.

The Metropolis algorithm is certainly not the only stochastic process that leads to a certain
probability distribution, but it is presumably the simplest one. Its simplicity is mainly
due to the requirements of the detailed balance and the symmetry of ®. Other, non-
Markovian processes, where the probability for a certain sequence depends on all previous
configurations, have probability expressions that are more complicated than truly random
(Eq. 258) or Markov sequences (Eq. 256). An example of such a sequence i1s given by the
self-avoiding random walk in which the walker 1s not allowed to visit a site that has been
visited in the past.

The trial step probabilities Wy y/ do not enter into the Metropolis acceptance criterion
(Eq. 264). Nevertheless they play an important role. First, they have obviously to be
chosen in such a way that any configuration of the system can be reached. Second, their
choice determines how fast the equilibrium distribution P(X) is reached. With a bad
choice, it may well turn out that the equilibrium distribution can not be reached within the
available computer time.

To illustrate the effect of the probabilities wy x/ on the equilibration rate, let us consider

a simple model system that consists of 11 states i with energies €; =1i,i=0,1,...,8,9,10.

0-245

We want to generate the Boltzmann equilibrium distribution at temperature T

pi = P(i o) = exp(—Pe;)/ <ZeXP B8k> (265)

where B = 1/(kgT). We compare the speed with which we converge to this Boltzmann
distribution for two different trial step probability matrices. The first matrix ®; ; connects
only states that are neighbors in energy, 1.e. state i is connected to state i + 1 and i — 1 with
some kind of periodic boundary conditions.

0-246

The second matrix ; ; allows for transitions between any pair of states:

0-247

The entire transition matrix is given by

0; j if g < €;
T,j=1q 5= jexp(—B(ei—g))) ife>eg (266)
I =Yz Thj ii=j

where T; ; denotes the probability for a transition from the j-th state to the i-th state.

The transition matrix 7" describes the dynamics of an ensemble of N systems that undergo
the above defined Markov process. If all the systems are initially in state j, then after
one step there will be NT; ; systems in state i. This relation holds in an average way for
finite N and is exact in the limit of large N. Let us now introduce the vector P(/) which is
obtained by applying the transition matrix 7' [times on the initial state vector P(0).

P(l) = T'P(0) (267)

This vector is a discrete version of the function P(X,7) used previously and it gives the
distribution of our systems after / Markov steps, i.e there will be NP(i,[) systems in state
i in the sense defined above.

It can be shown that any transition matrix 7" has the following mathematical properties.
All its eigenvalues A; are real and smaller in magnitude than 1 with the exception of one
eigenvalue, Ay, that is exactly 1. This last property is actually easy to see. By construction

0-248

all the columns of 7 sum to 1,), iTji= 1, Together with the detailed balance condition
we obtain

Z T jp; = Z T;ipi = pi (268)
J J

Hence p 1s an eigenvector of T" with eigenvalue 1.
Our initial state P(0) can be written as a linear combination of the eigenvectors v; of T

P(0) =) civk (269)
k

In terms of the v;’s the vector P(/) is given by

P(l) =Y cihv (270)
k

Since all eigenvalues are smaller in magnitude than 1 except Ay we obtain

lim P(I) = covo (271)

[—oo

The rate of convergence to vo depends however on the eigenvalue that is second largest in
magnitude. If we call this eigenvalue A; we have the condition that

A <e (272)

0-249

in order to get the equilibrium distribution with an error of less than €. As a consequence
the convergence to the final equilibrium distribution will be slow if there is an eigenvalue
A1 close to 1.

Let us now come back to our example with the two trial matrices ®. The eigenvector v
of the two transition matrices constructed according to Eq. 266 with the two trial matrices
is of course identical as it should be and represents the Boltzmann distribution. However
A1 is different in the two cases, approximately .9 for the first trial matrix and .8 for the
second in the case of 3 = 1. Hence equilibrium is obtained roughly two times faster with
the second transition than with the first one. This 1s not surprising. The second matrix has
a much higher connectivity that allows transitions between all states. This should speed
up the equilibration process.

Exercise [3pt]: Perform a Markov process with the two transition matrices (Eq. 266 to-
gether with the two trial step probabilities from the previous pages) and verify that you
get faster convergence for the trial matrix with the high connectivity. First verify by per-
forming a large number of time steps about (10000) that you obtain in both cases the
Boltzman distribution at temperature 1. Then start 10000 different (i.e with different ran-
dom numbers) walkers from the same initial state i = 10 and perform only 20 Metropolis
steps (Eq. 264) for both trial matrices. Plot the histogram of the distribution for the 2
cases and compare with the Boltzmann distribution.

0-250

The Metropolis algorithm plays a central role in simulations in statistical mechanics,
where one has to calculate quantities such as the energy in a canonical ensemble

Yye PEWE(Y)
ZY e—BE(Y)

<E > canonical = (273)

For the case of a continuous system the sum is actually a high-dimensional integral. If
we have configurations X that are distributed according to the Boltzmann distribution the
internal energy is simply given by the sum (or integral) over the N configurations.

1
<E > canonical = E(X 274
=N ; (X) (274)

In a simulation, we calculate the above ensemble average again as a "time’ average

1y
< E > canonical= Yll_rgo T t_ZlE(X(t» (275)

where X (¢) is the ’trajectory’ of a walker. In the above sum all the configurations X for
which the escape steps fail once or m times because the new configurations X’ are rejected,
are included twice or m + 1 times in the sum. This slows down the equilibration process.
To avoid summing over the same configuration many times, the trial escape steps should
be chosen such that they have a reasonable chance of success.

0-251

Error estimates for expectation values obtained by the Metropolis
algorithm

The error in a stochastic process decreases like %. So one might expect that the error

in a quantity that is calculated with a random distribution generated by a Markov process
is given by the same expression. For instance one might think that the average error of

Eq. 275 1is given by
C

_— 276
T (276)
where
6= \/< Eczanonical > — < Ecanonical >2 (277)
and
1 T
<E > canonical = T Z E(X(t» (278)
=1
2 1 d 2
E canonica S — E(X (1 279
<E*> z =) E(X(1)) (279)

~
I
[Un

This error estimate is much too optimistic. This can easily be seen by considering the case
where the Monte Carlo simulation is trapped in a configuration. In such a case exactly the

0-252

same energy 1s included many times in the expectation values, but the error clearly does

not decrease as predicted by the above formula. The reason why the above formulas are

not valid is because a Markov process contains correlations that are not present in a truely

random process. The correlation length can be obtained from the auto-correlation function

C(k)

<EX@)EX(t+k)>—<E(X(t)) >*
E(X(1)?>—-<E(X(r)) >?

For a truely random process the expectation value < E (X (¢))E (X (¢t +k)) > is zero unless
k = 0 and hence C(k) = &;. For a Markov process C(k) is not a delta function, but it
decays exponentially. The correlation time 7 is defined as the time at which C(k = T;)
has decayed close to zero. In calculating the error bound we have therefore to sum in
Eqgs. 278,279 not every term but only every 7.-th term.

Ck) = (280)

0-253

PROJECT: Calculation of the magnetization in the Ising model

The 2d Ising model on a periodic square lattice

In the square lattice periodic Ising model we construct a square lattice of points labelled
by the integers (i, j) where i = 1,...,L and j = 1,..., L giving, in total, N = L? lattice sites
(or spins). At each lattice site sits an Ising spin s; ; which takes the value 1 (either
spin-up or spin-down). This L x L lattice 1s then repeated periodically (see figure below)
such that sy 1 ; = s1,; and s;7+1 = s; 1. The energy of the system (for an arbitrary spin
configuration §) E is given by

L L
Es=—J)) (sijSi+1,j+5ijSij+1) (281)

Lo
where for our purposes we may set J = 1 as only the ratio £ /kg T (which is dimensionless)
is relevant in what follows. The average net magnetisation of the system is given by (where
the sum over S means sum over all possible 2" spin configurations)

cXp —E S kBT M S
(M) =) (Z/) (282)

S

where Z =Y sexp(—Es/kgT) and the net magnetisation for a given configuration is

MS = Zsi7j' (283)
ij

0-254

For large L the sum over all configurations rapidly becomes prohibitive. Below a critical
temperature 7., known as the Curie temperature, the system has a net magnetisation and
is termed ferromagnetic. Above 7¢ there is no net magnetisation and the system is in a
paramagnetic phase.

;
?
;
?
¢
;
?
;

;
9
;
¢
9
;
;
i

Periodic 6 x 6 lattice. The Spihs with white circles represent the spins in the neighbouring
lattices (some of the periodic images are displayed with matching colours).

0-255

Task 1

Given a spin distribution A with energy E4 we may pick a site at random and flip the spin
at that site changing the energy to Eg. Write down a simple formula for the difference in
the energies of system A and B

AEs_,p = E5 — EB. (284)

Hint : A maximum of 5 operations are required to compute AE4_.p.

The Metropolis Algorithm

If we pick a spin from system A, at random, we can work out AE4_,p associated with
changing the orientation of the spin to produce system B. According to Boltzman distri-
bution the probability that the transition A — B takes place goes like

P~ GXp(—AEA%B/kBT) (285)

where kg 1s Boltzman’s constant and 7" is the temperature.
The Metropolis algorithm, applied to the Ising model described in the previous section,
can be summarised as follows

1. Visit all sites (i, j) consecutively. An optimal strategy is to first sweep over sites
where i+ j 1s odd and then sites where i + j is even as spins in each of these sets
are statistically independent.

0-256

2. Calculate AE associated with flipping the spin at site (i, j)

3. Calculate the probability, at a given temperature T, of the transition taking place
using P = exp(—AE /kgT).

4. Decide if the transition takes place. This decision is made by generating another
random number ;-

e If P exceeds ., the transition is performed.

e If P is less than a, the transition is ignored, and a new one is tried instead
(return to point (1) and repeat MANY times).

Task 2
In the following a Metropolis ‘sweep’ will refer to an update of all spins in the system.
Allow the algorithm to equilibrate (perform around 100000 sweeps) before sampling.

1. Implement the Metropolis algorithm for the periodic square Ising lattice described
in the previous section. To test the algorithm you many use many iterations on a
small, say L = 10 lattice. Start with all of the spins at +1. Try running a low tem-
perature (1.3J) and a high temperature (5J). You should see the magnetisation per
site (m = M /N) oscillate in the ranges ~ 0.8 to 1.0 and ~ —0.4 to 0.4 respectively.
For the remaining tasks use a lattice with L=50.

0-257

2. After equilibration output to a file (this will allow the rest of the tasks to be com-
pleted without repeating the Metropolis calculation) M and m after each sweep for
temperatures 1.9J, 2.1J, 2.4J and 2.6J. (Hint : The number of sweeps may be very
large > 500000).

* Plot the net magnetisation per site m as a function of the number of Metropolis
sweeps.

e Calculate the average value of M and m from the data output for each temper-
ature.

3. ¢(From these calculations estimate the Curie temperature 7.. Hint : T, ~ 2.269J.
Close to this temperature the Metropolis algorithm suffers “critical slowing down”
and the number of required sweeps will become VERY large.

4. We may define the autocorrelation as
A(j) = (MFMFH) — (%) (M) (286)

 Using the output for M (for temperatures 1.9/, 2.1J, 2.4J and 2.6J) plot A(j).
As A(j) o< exp—j/7 find a value of 7 for each of these temperatures.

5. The calculation of exponentials in the Metropolis algorithm is computationally ex-
pensive. For the above algorithm devise a way to avoid calculating exponentials in
the inner Metropolis loop. How much faster is this improved algorithm?

0-258

10 Numerical solution of the single particle Schrodinger
equation

The time independent single particle Schrodinger equation is given by

.7‘[(|)i(l') = Si(l)i(l') (287)
where .
H = —§V2 +V(r) (288)

The eigenvalue €; gives the energy of the i-th state

The Hamiltonian in Eq. 288 is expressed in atomic units. These units are formally ob-
tained by setting/Z = m, = e = Ky = 1, where Ky = 4n€y. In this way important atomic
properties have unit values

e charge of an electron = 1 (instead of 1.60 x 10712 ©)

e mass of an electron = 1 (instead of 9.11 x 103! kg)

e Angular momentum,/ = 1 (instead of 1.05 x1073*J s
ﬁ2

* Bohr radius of hydrogen atom ag = - =1 (instead of .529 X 1071 m)

e

0-259

e Ground state energy of hydrogen atom — % mﬁe—f‘l = —% (instead of —% 436 x10~18
J)

Because many other atomic and molecular properties are related to the above quantities,
they will also have numerical values that are of the order of unity. For instance

e Bond lengths are of the order of the Bohr radius

e The binding energy of a molecule is typically a fraction of the ground state energy
of the hydrogen atom

e The electric dipole moment of a molecule is typically of the order of eag =1 (instead
of 8.45 x 10730 C m)

0-260

10.1 Discretization of the single particle Schrodinger equation

A computer can not directly do calculations on continuous functions. A continuous func-
tion has therefore to be parametrized by a finite number of discrete parameters. This leads
to a discretization of the equations that the functions have to satisfy. To discretize the
Schrodinger equation one expresses in most cases the eigen-functions as a linear combi-
nation of a set of so-called basis functions Uy (r).

0i(r) =Y ug U(r) (289)
P

Popular types of basis functions will soon be discussed. Substituting Eq. 289 into Eq. 287
one obtains

H Xk: uy. Uy (r) = ei;uk,,-Uk(r) (290)
Multiplying from the left by U;(r) and integrating, one obtains
Xk:uk,,- / U (r) HUy(r)dr = e,[k:uk,,- / U, (r)U(r)dr (291)
Introducing the Hamiltonian matrix Hj x

H = /Ul(r)}[Uk(r)dr (292)

0-261

and the overlap matrix S «
Sl,k = /Ul(l‘)Uk(l‘)dl’ (293)

we finally get the following eigenvalue problem

ZHl,kuk,i = SiZSz,kuk,i (294)
P X

Eq. 294 is the discretized version of the continuous Schrodinger equation Eq. 287. Intro-
ducing a vector u; that contains the expansion coefficients of the i-th eigenfunction Eq. 294
can be rewritten in matrix vector notation

Hﬁl’ = El'Sﬁl' (295)

The matrices H and § are symmetric, S i1s positive definite. Eq. 295 1s a generalized
eigenvalue problem. The difference to a standard eigenvalue problem is simply that the
matrix S is not the unit matrix.

Exercise [3pt]: Prove for the 1-dim case Schridinger equation that S and H (Eq. 293,292)
are symmetric. Prove that S is positive definite.

0-262

10.2 The variational principle

The variational principle states that the ground state wave function Qg is the wave-function
¢ which minimizes the energy expectation value €

£ = / o(r) Ho(r) dr (296)

under the normalization constraint

[oo(eydr =1 (297)

We will prove the discretized version of the variational principle which reads: the ground
state vector iy is the vector # which minimizes the discrete energy expectation value €

e=u Hi (298)

under the normalization constraint
il Si=1 (299)

Exercise [2pt]: Show that Eq. 298 and Eq. 299 are obtained from Eq. 296 and Eq. 297 by
using Eq. 289.

0-263

Proof : For the generalized symmetric eigenvalue problem with a positive definite S
H\7i = SiSVi (300)
the eigenvectors v; form a complete set of vectors with the properties that
—)T = . —)T =
V; Svj = Si,j ; V; HVJ' = 81',]'8,‘ (301)
Hence we can expand our ground state vector in terms of the eigenvectors
lip =Y _ Vi (302)
i
The normalization condition then becomes
2 _
Y =1 (303)
i
and the expectation value for the energy is given by
e=Y &} (304)
i

Since the eigenvalues are ordered by increasing value, the minimum is obtained if cg = 1
with all other coefficients being zero. Hence € = €y and g = vy

0-264

10.3 Numerical utilization of the variational principle

Since the ground state wave-function is the one that minimizes the energy €g, the solution
of Schrodinger’s equation can be considered as a minimization problem of the following
expression which includes the normalization constraint:

1 u! Hii
o~ 305
2 ul' Sii (305)
Its gradient g with respect to u is
g=Hu—¢eSu (306)
where € = i;?lgg and u is normalized such that #’ Sii = 1.

Exercise [1pt]: Verify that Eq. 306 is the gradient of Eq. 305

The condition that the gradient vanishes is thus equivalent to the eigenvalue problem.
Alternatively, € in Eq. 306 can be considered as a Lagrange multiplier that enforces nor-
malization if the unconstrained gradient of %ﬁTH u is used. The Lagrange multiplier point
of view i1s more general and will be used later on.

It can be shown that the Hessian matrix A for the search of the ground state €g,uq 1s
diagonal in the basis of the eigenvectors of H and that it has the diagonal elements D;

D; =¢;,— € (307)

0-265

Even though the eigenvalues and eigenvectors are unknown when one starts solving
Schrodinger’s equation, Eq. 307 is useful for the construction of approximate Hessians
for preconditioning purposes.

Generalizations of the variational principle

e The variational principle does not only hold if the wave-function is written as a
linear combination of basis functions (Eq. 289) but also for any nonlinear parame-
terization of a wave-function.

e The variational principle can be generalized to excited states. It can be shown that
the M-th excited state 1 minimizes the energy expectation values

e=) u Hpu (308)
1k
under the normalization constraint
Y o Sy =1 (309)
1k

and the additional constraint that u is orthogonal to all M — 1 lower eigenstates u;,
i=1,.M—1

Y o Spjur; =0 (310)
1.k

0-266

10.4 Independent particle methods: Density Functional Theory

The hydrogen atom is the only one-electron system found in nature. All other atoms,
molecules and solids are many electron systems and should therefore be described by a
many electron Schrodinger equation. The solution of the many electron Schrodinger equa-
tion is numerically extremely expensive and for this reason the many electron Schrodinger
equation is frequently approximated by so-called independent particle methods. These in-
dependent particle schemes give rise to a set of single particle Schrodinger equations with
a modified potential. Whereas in the simple single particle Schrodinger equation the po-
tential contains only external potentials (such as the potential of the nuclei V,,(r)), the
potential in an independent particle scheme contains an additional part that describes the
influence of the other electrons. The most popular independent particle scheme is density
functional theory. Within this theory this additional potential is called the exchange cor-
relation potential. We will not dwell onto the theoretical background of density functional
theory, but only present the resulting Kohn-Sham equations that need to be solved.

Even though there exists an existence proof for the exchange correlation potential, its
explicit form 1s unknown. For this reason various approximate forms are used. The most
basic one is called the local density approximation (LDA). The functional used in this
context depends only locally on the density and it has the property that it is exact for a
constant electron density. In a real atom or molecule the density is of course not constant
but varies. In spite of this the LDA approximation is surprisingly accurate. Within the

0-267

local density approximation of density functional theory, the total energy of a system of
N electrons 1s given by

E==Y 5 [Vaimdrs [Vampwars; [° e v+ £, fp(r)

(311)
where the charge density p(r) is the sum over the square of all the occupied Kohn-Sham
orbitals ¢;

p(r) = ;¢?(r>¢i<r> (312)

The first term in Eq. 311 is the kinetic energy of N independent electrons, the second
the interaction of the electrons with the nuclei and potentially other external potentials,
the third the classical electron-electron repulsion and the last the exchange correlation
energy. The Kohn-Sham equations are obtained by minimizing the total energy expression
Eq. 311 (multiplied for convenience by 1/2) under the constraint that the orbitals ¢, are
orthonormal. Using the Euler Lagrange formalism, it can be shown that the unconstrained
gradient d;(r) is

1

() = =5 V20,(x) + Ven () 04(1) + |

p(_r/r)/’ dr’ (l)i(r) + ch(p(r)) q)i(l‘) (313)

r

0-268

where the exchange correlation potential 1s defined as

Oy (p(r))
Vie(p(r)) = (314)
o) =50
Defining a LDA Kohn-Sham Hamiltonian as
1
"]_[KS — —§V2+Ven(r) ‘|‘VH(r) +ch(P(l')) (315)
where Vi = f -
be re- expressed as
di(x) = Hics 0,(r) (316)

It can also be shown that the orthogonality constraints can be imposed by Lagrange mul-
tipliers and the condition that the constrained gradient vanishes becomes

N
— Y Aijo;(r) =0 (317)
=1

where

,J—/% dr—/(bz)d; (r (318)

0-269

and ¢; is a set of orthonormal wave functions, i.e [¢;(r)¢d;(r)dr = 0; ; . Using Eq. 316,
the condition that the constrained gradient vanishes (Eq.317) can then be written as

Hysi(r Z Ai j0;(r) (319)

Exercise [1pt]: Verify that A is a symmetric matrix, i.e. that Eq. 318 holds true

The set of orbitals ¢; that satisfies Eq. 319 is not unique. This comes from the fact that the
LDA energy expression (Eq. 311) 1s invariant under unitary transformations. This means
that if we have one set of orbitals ¢;, any other set ¢; where

2

Z Ui.j0; (320)

will give the same energy if U is an unitary matrix. The demonstration of the correctness
of this statement follows from the fact that the energy in Eq. 311 depends only on the
charge density p and the kinetic energy. Both are invariant under unitary transformations
of the orbitals. Let’s demonstrate this explicitly for the charge density, the demonstration
for the kinetic energy 1s analogous. Lets call the charge density obtained from the new set

0-270

of orbitals ¢; p. Then we have

3() = ﬁlqﬁ(r)@(r) 1)
- }j@(r)q»j(r);v,zw,j a22)
= id) (r)¢j(r);U5U1,J- (323)
= ZJ,¢ (r)¢;(r)o; (324)
- i¢?<r>¢i<r>—p<r> (325)

Because of this invariance under unitary transformations of the orbitals we may choose
so-called canonical orbitals which give rise to a diagonal matrix A. Denoting the diagonal
elements of A by €; Eq. 319 becomes

.7{1(5(1)1'(1') — 8i(])l'(l') =0 (326)

This equation resembles very much the single particle Schrodinger’s equation. As already
pointed out the difference is that the potential of the Kohn-Sham Hamiltonian consists of

0-271

the external potential V,,, plus the so-called Hartree potential Vg (r) = f r ,|). dr’ and the

exchange correlation potential v,.. The Hartree potential describes the classical repulsion
of charged particles whereas v, gives all the quantum mechanical corrections to this clas-
sical repulsion. Even though Eq. 319 looks like an eigenvalue problem, it is not a standard
eigenvalue problem. The reason for this is that the Kohn-Sham Hamiltonian depends on
the eigen-orbitals ¢;, i.e on the solution of the apparent eigenvalue problem. For this rea-
son the energy (Eq. 311) is also not equal to the sum of the Kohn-Sham eigenvalues €; as
it would be for non-interacting electrons.
Since independent particle schemes do not lead to a standard eigenvalue problem, but to
a more complicated self-consistent eigenvalue problem, we will consider the solution of
the Kohn-Sham equations (Eq. 326) as a minimization problem.
Eq. 326 can be discretized in the same way as we did with Eq. 287. In analogy to Eq. 306
we obtain

HKSﬁi — SiSﬁi =0 (327)

where Hgg is the Kohn-Sham matrix and #; is the vector that contains the expansion coef-
ficients of the i-th orbital (Eq. 289). Since the Hartree and exchange correlation potential
in Hgg depend on the charge density, Hks has to be recalculated in any step of a mini-
mization algorithm.

Up to now we have neglected spin effects. Because of the Pauli principle, the orbitals of
different electrons have to be orthogonal. The orthogonality is automatically assured if

0-272

the electrons have different spins. In the case of the helium atom we have for instance
2 electrons, both of which have the same spatial Kohn-Sham orbital, but which differ in
their spin. This is the simplest example of a closed shell system. A closed shell system
consists of an even number of electrons, and the electrons pairwise share spatial orbitals.
The majority of stable molecules and solids belongs to this type. For a closed shell sys-
tem the charge density of the spin up and spin down electrons is the same and the total
charge density can consequently be obtained by summing only over all the different spatial
orbitals and multiplying by 2:

N/2
p(r) =2 ¢;(r)¢i(r) (328)
i=1
In the same way the kinetic energy 1s given by
N/2 4 ,
-2y = [0 (r)V-o; 2
Y5 [0l 0w (329)

In addition there are however also so-called spin polarized systems for which the spatial

part of the spin up orbitals (I)ZT 1s not equal to the spatial part of the spin down orbitals (l)f.
This 1s necessarily the case if the number of electrons 1s odd. One obtains then a up-spin

0-273

and down-spin charge density

l

l

NT NY
pl(r) = Zlq»? “(r)o; (r) ; pt(r) = Y o7 ()¢} () (330)
— =1

where NT and N* is the number of spin-up and down-electrons. The total charge density
p 1s obviously the sum of both, 1.e.

p(r) =p'(r)+p*(r) (331)

For such a system one has then to use in Eq. 311 a spin polarized version of the exchange
correlation energy

Ey = Exc(pT (r), pi (r)) (332)

and instead of Eq. 326 one obtains two sets of Kohn-Sham equations for both the spin

up and spin down orbitals. On the spin-up electrons the spin up exchange correlation
potential vl (p(r)) is acting whereas on the spin-down electrons the spin down counterpart

v}cc(p(r)) is acting. The Hartree energy and external potential energy depend also in the
case of a spin polarized system only on the total charge density p(r)

0-274

Accuracy of the discretized solution of Schrodinger’s equation

The exact solution of the discretized Schrodinger’s equation Eq. 294 1s always an approx-
imate solution of the exact continuous equation Eq. 288. The difference in the eigenvalues
of the discrete and continuous equations is called the discretization error. The discretiza-
tion error decreases with an increasing number of basis functions and tends to zero in the
limit of an infinitely large systematic basis set. A systematic basis set is by definition just a
basis set with this property , namely that the continuous eigenvalue € can be approximated
with any desired accuracy. All orthogonal basis sets, i.e basis sets for which S; ; = 0; ;
are systematic basis sets. Because of the variational principle the discrete eigenvalue is
always bigger than the continuous eigenvalue. This can be easily seen by the following
argument. Let us compare the eigenvalue €(m) obtained by using a basis set of m basis
functions and of another one, €(n), obtained by using a second set of n functions. We
assume that n > m and that the first m functions in the basis set containing n functions
are 1dentical to the m basis function of the smaller set. Hence any solution that can be
represented by the smaller basis set can also be represented by the larger basis set. Since
one has more degrees of freedom one can better minimize the wave function represented
by the larger basis set and consequently €(n) < €(m). Since €(n) tends to the continuous
eigenvalue ¢ if n is infinitely large we have as well that € < &(m).

0-275

Let us now assume that we have solved the discretized Schrodinger equation in a finite
basis set. Because of the variational property, the error in the eigenvalue (Ay) 1s smaller
than the error (Ax) of the wave-function. This can be seen from the figure below

Ay o< (Ax)? (333)

In other words, it 1s possible to get fairly good energies with a basis set that 1s too small
to represent the wave-function with high accuracy.

0-276

10.5 The hydrogen atom

We will consider the slightly more general problem of a single electron orbiting around
a nucleus of charge Z. Obviously the H atom has Z = 1. This 1s the only atomic or
molecular system found in nature for which an analytic solution 1s known. Since it allows
us to check any numerical solution against the analytic solution it will serve as a starting
point for numerical work. In addition the fact of having radial symmetry and no electron
electron interactions leads to considerable simplifications. The Hamiltonian 1s

1 Z
H=—-V"-= (334)
2 r

As 1s well known from elementary quantum mechanics, the eigenstates are characterized
by the 3 quantum numbers n, [/, m and can be written as a product of spherical harmonics
Y; m(F) and radial functions R, ;(r)

(I)(r)n,l,m — Rn,l(r)Yl,m(f) (335)

The radial functions satisfy the differential equation

11d d [(l+1 V4
[____ <r2—) NG 7] Rt () = En iR (7 (336)

0-277

Both the angular and radial parts form sets of orthonormal functions

/ R (PR 1(r) PPdr = / Y} 8V (B)dQ = 8,1, (337)

where d(2 indicates integration over the surface of the unit sphere. The first radial func-
tions are listed below.

3 _7r
Rigp = 2Z%e (338)
3
Z\?2 Zr
Roop = 2(2) [1=22) 272
1 (Z\ .,
Ry, = ﬁ(i) Zre 2/ (339)

The first spherical harmonics are given by

Yoo = 1/ -

’ 4
Yiop = icos(G))

’ 4

3

N1 = 15 Sin(®) exp(—19)
Y11 =) sin(0) exp(/0)

’ 47

For the radial differential equation 336 there is also a variational quantity. Using the
Euler-Lagrange formalism it can be shown, that solving Eq. 336 is equivalent to minimiz-

ing the quantity
2
")) +R(r

N

under the appropriate orthogonality constraints.

[(1+1)
2

N——"

R(r)—R(r)ZrR(r)| dr (340)

0-279

Finite elements for the radial hydrogen equation
We will use first order finite elements to discretize the radial wave-function R(r).

Ri(r) =Y ui(k)U(r) (341)
k
The finite element functions U (r), U (r), , Uy(r) attached to the radial grid r, ...,r4
are shown below
1
T M3 ly I's

They have the property of being one at the central grid point and tend linearly to zero
towards the two neighboring grid points. Beyond the neighboring grid points they are
identically zero. Thus the expansion coefficients u(k) in Eq. 341 are identical to the value
of the function at the grid point r;. Consequently the function R in each interval [ry : rp.q]
1s given by

u(k+1) —u(k)

Fe+1 — Tk

R(r) =u(k)+ (r —r¢) (342)

Using Eq. 342 rather than Eq. 341 as the basic definition of our radial wave-function 1s

0-280

actually advantageous. With Eq. 342 the radial wave-function can take on a non-zero
value u(0) at the origin ro = 0, whereas Eq. 341 would impose a zero value.
In our finite element basis the energy expression of Eq. 340 becomes

M=1 rrp g — 2
P 1 / (u(l+1) u(l)) i (343)

Fi+1 — 11
1+1 M- 1/%(u(l4+1) —u(l) >2
+ r—r dr
Z Vi41 — 71 (2
711 u(l+1) —u(l))2
— 7 / r—r rdr
Z (Vi41 — 17 ()

The unconstrained gradient d(k) of the above energy expression is obviously given by

aa—E. The constrained gradient of Eq. 294 requires the radial overlap matrix. A convenient
u(k)

way to obtain the overlap matrix is obtained from the identity.

/R rdr

» 1) n;O /:H (u(m)_|_ u(m+1) —u(m) (r_rm)>2 2 dr (344)

rm+1 —m

S(k,l) =

0-281

In particular, this way of calculating S avoids complications that would arise with the
standard definition because we would like to add “half” a finite element in the interval
[ro : 1)

Exercise [2pt]: Show that the calculation of the overlap matrix through Eq. 344 is equiv-
alent to the definition given in Eq. 293

Let us now discuss the choice of the radial grid r,.. We know that the radial functions
R, ;(r) vary much faster close to the origin than far away. Therefore the resolution near
the origin should be higher, i.e the distance between the grid points smaller. There are
many recipes for constructing grids with this property. A widely used grid is the so-called
logarithmic grid

r, = a exp(ok) —a k=0,...M (345)

The constant a determines the distance of r; form the origin. It should be a small fraction
of the extent of the least extended radial orbital. So let’s put @ = 1/1000. The largest radial
grid point should be at a distance where the most extended orbital has decayed to a tiny
value. Let’s put rjy = A = 100. How many grid points M we can afford now determines o

a=1In <A+“) M (346)

a

At the end of computational interval we impose the boundary conditions R(ry;) = 0.

0-282

The condition number of a a free particle

When one tries to solve Schrodinger’s equation by using minimization methods such as
steepest descent or conjugate gradient one realizes that the convergence becomes very
slow if the number of grid points is large. As we have seen before a slow convergence rate
is related to a poor conditioning number. For realistic systems the condition number can
not be calculated analytically, but for a free particle this can be done and the deterioration
of the condition number can consequently be shown. Let us consider a free 1-dim elec-
tron in a periodic box of length L. To represent the Hamiltonian we use first order finite
differences on a grid of spacing h. There shall be m grid points in the box, hence L = mh.
The resulting Hamiltonian 1s

5 ifj=i
Hijj=q —3n ifj=itl (347)
0 else

This Hamiltonian is identical to the matrix of Eq. 184. The eigenvalues of this Hamilto-
nian are

> (1 cos(2mk/m) (348)

0-283

and the associated eigenvectors

m

ur(j) = exp (1271:@) (349)

where k runs from —m /241 to m/2

Exercise [1pt]: Verify that the above equations give the eigenvalues and vectors of the
Hamiltonian (347)

The lowest eigenvalue €,,;, equals 0, the highest eigenvalue ¢€,,,, equals 2/ h? and the

eigenvalue of the first excited state €, equals (1 — cos(2w/m)) hLZ If m is large this eigen-

value is approximately given by (21/ m)zhi2 According to Eq. 307 the smallest eigen-

value of the Hessian of a ground state search is then €; — &,,;, and the largest eigenvalue
1S €,ax — Emin. Hence the condition number is given by

= Emax — Emin _ Emax _ m2 (350)
€1 — Emin € 2n

As claimed, the condition number deteriorates as the number of grid points increases.
Preconditioning is therefore necessary.

0-284

Preconditioning the eigenvalue problem

As we have seen solving Schrodinger’s equation is equivalent to a minimization problem.
For an orthogonal basis set, the (constrained) gradient of Eq. 306 reduces to

g = Hii —¢ii 351)

Since € is a variational quantity, it converges faster to the true eigenvalue than # converges
to the true eigenvector (see Eq. 333). In our mathematical analysis we can therefore
assume that € is an exact eigenvalue. Let us assume that we have at a certain stage of our
iteration the approximative eigenvector # and that the true eigenvector is given by u + p.
This gives the equation

H(ii+p)—¢e(ii+p)~0 (352)
Solving the above equation we get a linear system of equations for p
(H—¢)p=—(H—g)i=—§ (353)

Eq. 353 is in principle the equation to be solved for preconditioning purposes. It gives us
the preconditioned gradient p from the ordinary gradient g. As it will turn out, we should
however better slightly modify Eq. 353 in the numerical context. To analyze the prob-
lem, let us introduce the exact eigenvalues €; and eigenvectors u;, satisfying the ordinary
eigenvalue problem

Hﬁ,‘ — Siﬁi =0 (354)

0-285

The gradient g as well as the preconditioned gradient p can be written as a linear combi-
nation of these eigenvectors

§=Y ol ; p=Y_ Biii (355)
Plugging these two expansions into Eq. 353 allows us to solve for the components of p
1
Bi = —au —, (356)

We see that [3; can explode whenever € is very close to an exact eigenvalue. This can
cause numerical problems if this condition 1s by chance encountered even though the
eigenvectors are not yet very well converged. There are several possibilities to eliminate
this problem. One possibility is to replace the equation for p

p=(H-—¢l)" '3 (357)

by
p=Re[(H— (e+iy)I)"'g] (358)

The introduction of this imaginary shift Y modifies Eq. 356 to

Bi = (359)

The components that are close in energy to € can now not any more explode whereas all
the components that are far away from € are treated essentially in the same way. The

situation 1s illustrated below.
te)

gamma=0 ———

Eq. 358 thus gives rise to powerful preconditioned steepest descent iteration
U=u—1p (360)

where ¢ 1s of the order of 1

0-287

PROJECT: Calculation of the ionization potential of Helium

Physical background:

The ionization potential is the energy that is required to take away an electron from an
atom or molecule. The ionization potential of helium is consequently the difference in en-
ergy between the neutral helium atom and an He™ atom. The missing electron is supposed
to be very far away with negligible kinetic energy. Hence the missing electron gives no
contribution to the energy. The wave-functions of both the He and He™ atom have pure
s character and in both cases only one spatial orbital has to be calculated. In the case of
He™ we have a spin-polarized system, where only one electron (let’s say with spin up) is
occupying this orbital and in the case of He we have a closed shell where a pair of spin-up
and spin-down electrons is occupying the spatial orbital.

Tasks

In this project we will first develop a program that calculates the 1s orbital of H. By adding
exchange correlation potentials and energies we will then pass from the single particle
Schrodinger equation to the independent particle Kohn-Sham equations. This will allow
us then to treat the 2-electron He atom.

0-288

Part I: The hydrogen atom

e The file http://www.unibas.ch/comphys/comphys/TEACH/WS04/ATOM/subs.f90
contains all the subroutines that are provided for this project. It contains the sub-

routine “energr’ that calculates the energy of Eq. 343 and the gradient % for a

given input vector u. The routine works for general angular components / and since
we are only interested in s states ’lang” has to be set to 0. The routine “overlap”
calculates the overlap expectation value O = i’ Sii and its derivative %. These

two subroutines where generated quasi automatically by Maple. The routine radgrid
generates the radial grid of Eq. 345.

e Use the exact 1s radial wave-function of Eq. 338 and check whether the gradient of
Eq. 306 is small. It is actually not zero, since the analytical wave-function is not
the exact solution for the case where the wave-function is represented by finite ele-
ments. The gradient should however tend to zero in the limit where we use more and
more grid points (and consequently more and more finite elements). Check whether
this is fulfilled. The energy should actually improve by a factor of 4 whenever the
number of grid points 1s doubled (why?).

e Try now whether you can find the excact numerical finite element solution. Use
as an input guess for the wave-function the function exp(—%rz) (do not forget to

0-289

normalize it numerically!). Use the steepest descent method with energy feedback.
You will find that you need a very small step size o to prevent the energy from going
up. Verify that the convergence becomes slower and slower as you add more grid
points.

Add now preconditioning to your steepest descent minimization. Eq. 358 which
was derived for an orthogonal basis set becomes

p=Re[(H—(e+1Iy)S) '] (361)

in the case where the overlap matrix S is not the unit matrix /. In order to solve the
resulting system of equations you need now explicitly the tridiagonal Hamiltonian
and overlap matrices. They are calculated by the routines ”crthhp” and crtssp”.
The complex system of equations 1s solved by the routine ”ctridag”. .1 i1s a good
value for y. With preconditioning, the number of iterations should be nearly inde-
pendent of the number of grid points and the optimal stepsize ¢ in Eq. 360 should be
close to 1. For the solution of the complex system of equations you need to trans-
form a real array into an complex array and the real part of a complex array into a
real array. The first operation can be done in Fortran by

0-290

complex (16), dimension(n) :: ac
real (8), dimension(n) :: ar

do 1i=1,n
ac(i1) = cmplx(ar(i),0.d0)
enddo

and the second by

do 1=1,n
ar (i) = real(ac(i))
enddo

Part II: The density functional atomic program

 Calculate the electronic density p for the LDA hydrogen wavefunction found previ-
ously. Check that it has the correct normalization. Numerically, the normalization

0-291

integral [R(r)?r*dr has to be replaced by a sum. Use the trapezoidal rule which
approximates this integral in the following way

Y R(ri)’riwi (362)
i=0
where
"1;0 ifi=0
w; = % ifi=m (363)
T else

rm 1s the largest radial grid point and ry equals zero in our context.

Write routines to calculate the Hartree potential Vi using Eq. 213 and the electro-
static energy Ey = % [Vg (r)p(r)dr. To do the integrals for Vi and Ey numerically
use again the trapezoidal rule with the above defined weights w;. For the systems
considered 1n this project the charge density is spherically symmetric and we need
only the components associated with Y. Note that pgoo of Eq. 213 is given by
—L_R(r)?. Plot the calculated electrostatic potential. For large distances, it should

Van
coincide with a 1 /r potential.

Add a routine that calculates the exchange correlation energy. The routine
”"LSD_PADE?” calculates the exchange correlation energy density €,.(r) at any point

0-292

r for which the charge density p(r) was given as the input. The exchange correlation
energy 1s obtained by integrating over the exchange correlation energy density times
the density.

Eie= [£c(p(0) p(r)dr (364)

In our case p(r) = p(r) = 2=R(r)?. Numerically this integration is obviously re-
placed by a sum. Do the integration again with the trapezoidal rule:

Zexc 2riwi (365)

Calculate next the electrostatic and exchange correlation energy for the 1ls state of
hydrogen. If LDA density functional theory was exact, the sum of both would be
zero. Unfortunately it is not zero, but it is rather small and the energy according to
Eq. 311 is close to the correct value of -.5. Remember that the hydrogen is a spin
polarized system and so the input value "ETA” to the subroutine "LSD_PADE”
should be 1.d0.

Because LDA is not exact for the hydrogen atom, the hydrogen 1s wave-function
1s not any more the solution of the LDA Kohn-Sham equations. Obviously this
wave-function should not be very different from the true hydrogen wave-function.

0-293

We will next find the wave-function which is the solution of the Kohn-Sham equa-
tions by a preconditioned steepest descent method. This requires that we add to the
gradient d™d = M4 of the hydrogen atom the contributions from the Hartree and
exchange correlation potential. The additional gradient d® is the partial derivative
of the Hartree and exchange correlation energy with respect to the u;’s. When cal-
culating this gradient one must take into account that both the Hartree and exchange
correlation energy depend on the u;’s and one gets the result

d* (i) = (Ve (i) + vk (D) rf wiu(i) (366)

Write a subroutine that adds this term to the gradient H™%ii from the hydrogen
hamiltonian H¥?. The € in the expression for the constrained gradient (Eq. 306) is
the Kohn-Sham eigenvalue which is not the Kohn Sham total energy of Eq. 311. It
follows from Eq. 318 that the Kohn-Sham eigenvalue € is related to the hydrogen
eigenvalue €29 by € = € + Y. d%(i)u(i). To summarize, the final constrained
gradient 1s given by

g(i) = Zthd(i,j)) +d(i) —¢ ZS i,j)u (367)
J
We see that the additional gradient contribution could also be obtained by adding to

H™ the diagonal terms (Vi (i) + vic())r?w;. This has actually to be done for the
matrix that is used for preconditioning.

0-294

e Calculate next with the same program the total energy of He™, i.e. of a hydrogenic
atom with charge Z = 2.

e After having found the LDA energy and wavefunction of the hydrogenic atom we
will turn to the helium atom. Not much changes compared to the hydrogenic atom
except that we have now 2 electrons in a closed shell system and hence the charge

density and kinetic energie have to be calculated according to Egs. 328 and 329.

The spin polarization "ETA” is zero and consequently S)ch(i) = eic(i). Calculate the

energy of the helium atom by the same preconditioned steepest descent method.
The value of € called shtr” in the subroutine ”ctridag” sould never be much higher
in energy than the true eigenvalue. If initial values for € are very high because the
input guess was bad, ”shtr” should be constrained to a lower value, that is close to
the final eigenvalue.

e Calculate the 1onization energy by taking the difference between the LDA total
energy of He and He™.

0-295

11 Global geometry optimization

Structure determination is one of the most fundamental endeavors in physics and chem-
istry. Determining the geometric structure of a solid or molecule requires finding the
atomic positions Ry, ..., Ry, that will give a minimum of the total energy E(Ry,...,Ry).
This high dimensional total energy function 1s also called the Born-Oppenheimer surface.
In general this high dimensional function has many minima.

Pot. E. Surface

In a local geometry relaxation one finds the local minimum that is closest to a starting
point. The minimization methods discussed previously such as the steepest descent or
the conjugate gradient method can be used for such a geometry relaxation. Because the
condition number of the Hessian is frequently bad, the convergence of these methods
can be slow, but nevertheless they will finally find a local minimum. In the case of a
molecule there are low frequency torsional and bending modes in addition to high fre-
quency stretching modes. In the case of a bulk-like structure there are long-wavelength
elastic modes whose frequencies tends to zero in addition to the high-frequency short-
wavelength phonons. As a consequence the condition number is proportional to the largest
diameter of the structure.

Exercise [2pt]: Show that for a linear periodic chain the condition number of the Hessian
is proportional to the length of the chain.

Finding the global minimum of an arbitrary high dimensional function is one of the most
difficult mathematical problems. There exists no algorithm that will find such a global
minimum with certainty within a computing time that grows less than exponentially with
respect to the system size. Systematically exploring the high dimensional space is im-
possible in practice. Covering it with a grid of m points in each direction would require
m>Na grid points because the dimensionality of the Born-Oppenheimer surface of a sys-
tem of N, atoms is 3N,;. Another complication is that the number of local minima grows
exponentially with the number of atoms. This can easily be seen for the alkane family,

0-297

C,H>, 2. As one starts building such a polymer by adding consecutive CH;, building
blocks, one can attach the C atom at any of 3 tetragonal bond directions, while saturating
the remaining ones with H. Transforming one configuration into another one requires
rotations about C — C bonds, which involves energetic barriers. Hence each configuration
1s a local minimum and there are of the order of 3" such local minima. Ethane (C>Hg) is
shown below.

In spite of the mentioned theoretical obstacles there are however algorithms that can find
the global minimum for moderately complex systems within acceptable computing time.

0-298

11.1 Simulated annealing

Simulated annealing is a classical method to find the global minimum of a high-dimensional
function. Even though it 1s also widely applied outside physics and chemistry we will only
consider its application to the structure determination problem.

Simulated annealing is based on thermodynamics. At a sufficiently low temperature the
system will be in the ground state, 1.e. in the global minimum €y of the potential energy
surface since all other minima €; have a Boltzmann weight exp(—p(g; — €g)) that is van-
ishingly small. One might hence hope to obtain the ground state by a Markov process that
tends towards a low temperature Boltzmann distribution. This will not work in practice.
The system will be trapped in some local minimum because at low temperature it can not
overcome the barriers that is has to cross to get into other minima. This behavior will be
found for more or less any choice of the trial matrix ®. The problem can be alleviated
by starting the Markov process at a high temperature and then decreasing the temperature
gradually during the simulation until only the ground state remains occupied. In this way
the system has hopefully still enough energy to cross barriers before being trapped in the
ground state. This gradual decrease of the temperature i1s the characteristic of simulated
annealing and gave rise to its name. There are two essential ingredients of simulated
annealing that can be realized in many different ways:

e The type of trial moves that are used which in turn determine the matrix .

0-299

e The schedule for reducing the temperature

The simplest implementation of simulated annealing is based on molecular dynamics.
This has the advantage that one does not have to come up with a prescription for the trial
moves. The system is propagated using Newton’s equations of motion. Ergodicity ensures
that the thermodynamic Boltzmann distribution 1s finally reached. Molecular dynamics
based simulated annealing is thus imitating what is happening in nature during a crystal-
lization process. While the system is slowly cooling down the atoms move according to
Newton’s law and find finally the global minimum, which is the perfect crystal structure.
One 1s thus only left with setting up a prescription for the cooling rate. The simplest
cooling recipe is just to impose an exponential decrease of the temperature. A template
program implementing this simplest simulated annealing method is shown below. Some
values (4.d0, .9999d0 etc) are just examples and other values may be more appropriate in
other contexts. It has to be stressed that there is no guarantee that the global minimum
will be obtained at the end of the run. It is always a matter of chance and changing some
parameters or the initial atomic positions may well lead to different results.

0-300

read initial atomic positions and calculate initial forces

ref_kin=4.d0
1000 continue
ref kin=ref kin*.99999
if (ref_kin.le.1.d-3) goto 2000

DO A VELOCITY VERLET MD STEP AND CALCULATE THE KINETIC ENERGY act_kin

if (act_kin.gt.ref_kin) then
reduce velocities by a factor of .99d0
else
increase velocities by a factor of 1.01d0
endif
goto 1000
2000 continue

write final atomic positions

0-301

Exercise [Spt]: Geometric ground state of sodium clusters

Use the simulated annealing algorithm of the previous page to find the 3 energetically low-
est configurations of a cluster of 13 sodium atoms. Generate by hand some input structures
and check whether they will all give the same ground state. Describe the interactions of
the sodium atoms with the embedded atom method (Na_v2.eam.fs in MATERIAL folder)
used already for the calculation of the auto-correlation functional. A template file is also
available in the MATERIAL folder. Use the velocity verlet algorithm (Eq. 98) for the MD
part. Check whether energy is conserved (up to some oszillations as shown in the Fig.
on page 106). Monitor how many basins of attraction are crossed during the simulated
annealing run. Remember that a basin of attraction is associated to a local minimum and
that it consists of the ensemble of all points that will lead into this local minimum if they
are used as starting points for a steepest descent minimization. Interrupt therefore the MD
trajectory every 100 steps and start a steepest descent geometry optimization (Eq. 27) with
a small step size from the current configuration along the MD trajectory. Use an energy
feedback to adjust the step size. While executing the program write into a file the energy
values of the minima of the current basins of attraction found by the geometry optimiza-
tion. Plot this file with gnuplot or some similar software during program execution to
monitor the progress in the search for the global minimum. Save the configurations of the
3 lowest local minima configurations into files.

0-302

11.2 Basin hopping

A basin is the 'region of attraction’ around a local minimum. All small step size steepest
descent minimizations that are started within the basin associated to one local minimum
will end up in this local minimum. Basin hopping is a Monte Carlo method on a modified
potential energy surface. In an ordinary Monte Carlo simulation the Boltzmann factor
exp(—PB(Eyew — Ecurr)) of the Metropolis step contains the energies Ej,,, and E,,;, of the
new configuration X,,,, and of the current configuration X.,,-. A configuration X in our
context is determined by all the atomic positions Ry, R», In the basin hopping method
E,., and E.,, have different meanings. They are the energies of the local minimum of
the basins in which X,,.,, and X_,, are located. This gives rise to a modified potential that
1s constant within one basin.

1-dim potential energy toy surface. High

barriers separate the basins around each

local minimum. In the basin hopping

" method all the barriers disappear resulting
~" in a piecewise constant potential surface.

,,,,,

,,,,,
1

0-303

The basin hopping has the advantage that barriers separating different minima can be over-
come much more easily during the simulation. In an ordinary Monte Carlo simulation the
Boltzmann factor exp(—PB(Enew — Ecurr)) can become very small when one tries to cross
into another basin since the energy differences can be much larger than on the transformed
potential energy surface of the basin hopping method. In the worst case E.,, 1s the energy
of a local minimum and E,,,, is the energy at the top of a barrier between two minima in
an ordinary Monte Carlo method. As a consequence crossing from one basin into another
1s a rather rare event in ordinary Monte Carlo simulations. Hence it can take a very long
time until one finally falls into the global minima.

Exactly the same problem is encountered in simulated annealing using MD. At low tem-
perature, the MD trajectory will oscillate back and forth most of the time in the basin
around one local minimum and it will only rarely jump into another basin.

In the basin hopping method the calculation of the transformed potential is performed
on the fly. For each configuration X one performs a local geometry optimization using a
method such as steepest descent. The energy of the local minimum found in this way 1s
then the energy of the configuration X. The trial steps that bring us from one configura-
tion to the next are in the simplest case just random displacements of the atoms. For small
random displacements one will remain for a long time in the same basin. Since the ener-
gies remain constant, all these moves are accepted in the Metropolis step. On the other
hand, if one chooses very large random displacements the algorithm is similar to a random
search. Such a random search is generally less efficient because it 1ignores relationships

0-304

between neighboring local minima. If one has already found a good local minimum, it is
likely, that other even better ones are close by. A too large step size gives therefore a low
acceptance probability in the Metropolis step. The step size of the random displacement
is therefore usually adjusted such that half of all new configurations are accepted. The
resulting algorithm is sketched below:

initialize configuration X with energy E ; initialize stepsize
do 1000, 1step=1,nstep

generate a new trial configuration:
Xtrial = X + stepsize*random_vector

starting from Xtrial do a local minimzation
to get energy Etrial of the local minimum

calculate Boltzman factor exp(-beta*(Etrial-E)) for Metropolis step
If Xtrial 1s accepted 1n the Metropolis step then
X=Xtrial ; E=Etrial
stepsize=stepsize*1.05
else
stepsize=stepsize*.95
endif

1000 continue

0-305

There 1s one free parameter in the basin hopping method, namely the temperature that 1s
hidden in the parameter 3. This temperature can be lowered successively during a sim-
ulation. Basin hopping can thus be used within a simulated annealing scheme, replacing
MD. Thermodynamics guarantees that at sufficiently low temperature only the basin of
the global minimum will be populated. But again thermodynamics can not tell us how
long it will take until the thermodynamic equilibrium distribution is reached and hence
how long it will take to find the global minimum.

0-306

11.3 Minima hopping

The next question that arises 1s how one should search for lower local minima that are
close to the current minimum. The answer 1s the following: One should try to go over
low barriers, because neighboring minima that can be reached by crossing low barriers
are more likely to be low in energy themselves. This relation between the barrier height
and the energy of the local minimum ’behind’ the barrier 1s explained by the Bell-Evans-
Polanyi (BEP) principle. It assumes that the entire function 1s made out of quadratic pieces
as shown below. Shifting down the parabola to the right will lower the barrier.

1 I I I I I
0.8 |- 4
// _ ’ 2 2
= el HE(x) =min (x*, (x—1)* = .1)
g /
> 04 — / _
2)
S (2 2
g o2p 1 E(x) =min(x*,(x—1)* — .25)
g \ ,
Q AN /
g of -
02+ -
-04 1]]]]
-1 -0.5 0 0.5 1 15 2

reaction coordinate (arb. u.)
MD coordinate x (arb. u.)

0-307

A simple way to find relatively low barriers 1s to do molecular dynamics, using as the
potential the function f(xi,...,x;) to be minimized. With molecular dynamics one solves
numerically Newtons equation of motion. The forces are given by the negative gradient
of f(x1,...,x;). Hence the sum of the kinetic and potential energy has to remain constant
during such a simulation. If the system has a certain kinetic energy E;,sic then it simply
can not cross barriers that are higher than Ej;,.ic. The molecular dynamics simulation
is started in the current local minimum. Initially the kinetic energy will decrease since
the system moves uphill. When it increases again the system has either crossed a barrier
or it is oscillating back towards the initial local minimum. At this point the molecular
dynamics simulation is stopped and the closet local minimum is found by the standard
local minimization techniques such as conjugate gradient. If one is lucky one ends up in
a minimum that 1s different from the current local minima. By repeating this process one
can explore many low energy local minima.

0-308

Minima hopping flow chart

initialize a current minimum ’Mcurrent’
MDstart
ESCAPE TRIAL PART
start a MD trajectory with kinetic energy Ekin from the current minimum ‘Mcurrent’
in a soft direction. Once potential energy reaches the mdmin-th minimum along the
trajectory stop MD and optimize geometry to find the closest local minimum ‘M’
if ('M’ equals ‘Mcurrent’) then
Ekin = Ekin*beta_same (beta_same > 1)
goto MDstart
else 1f ('M’ equals a minimum visited previously) then
Ekin = Ekin*beta_old (beta_old > 1)
else if ('M'" equals a new minimum) then
Ekin = Ekin*beta_new (beta_new < 1)

endif
DOWNWARD PREFERENCE PART
if (energy('M’) - energy(’'Mcurrent’) < Ediff) then
accept new minimum: ‘Mcurrent’ = ‘M’

add ‘Mcurrent’ to history list

Ediff = Ediff*alpha_acc (alpha_acc < 1)
else if rejected

Ediff = Ediff*alpha_rej (alpha_rej > 1)
endif

goto MDstart

0-309

Example: minima hopping for a 512 atom NaCl cluster

Global Minimum: 8 by 8 by 8 cube
wrong funnnel: 7 by 8 by 9 structure

|
+
i

|
I
e

=

TR o
¥

W

E=
T
+

0 I I [-HJ
1000 1500 2000 2500 3000 3500 4000

0-310

11.4 Genetic algorithms

In contrast to the previous methods for finding the global minimum, genetic algorithms
do not have their foundation in thermodynamics. Instead they try to mimic the Darwin-
istic evolution. The principle is the survival of the ’fittest” and genetic algorithms are
for instance using steps that are called mutations and crossovers. The basic quantity is a
population of individuals that are represented by their genes. Numerically these genes are
binary strings. A mutation consists of a random change of a gene, i.e. of a flip of one or
several of the bits in a gene. It is thus similar to a trial step move in a Monte Carlo method.
What 1s really new compared to Monte Carlo methods 1s the concept of gene crossovers.
Given two genes of two individuals, a crossover point 1s first determined at random and
then the genes are combined as shown below to obtain a child.

100111100 1 mother gene’

101 1T000TT1 1 father gene’

1001000111 ’child gene’

Gene crossing makes only sense if neighboring genes determine common functionalities.
This can be easily seen by going back to biology. If for instance in the example above, the
first 4 genes encode the functionality of ear and the last 6 the functionality of the eye, then
the child has a certain chance having both good ears and a good eyes assuming that the
mother had good ears and the father good eyes. If however the first 5 genes determine the

0-311

ear and the last five the eye then the above crossover after the fourth bit will very likely
result in both ears and eyes that do not work very well.

After performing the operations of mutation and crossovers on a population comes the
final survival step. The fitness of each individual i in a population that may consist of
parents and children generated by both mutations and crossovers 1s measured by its fitness
fi which would be in a physical problem for instance the negative of the energy of a
configuration. The average fitness of our population < f > of N individuals is given by

1 N
<f>:Ni§fi (368)

The survival rate of an individual is then proportional to f;/ < f >.

Repeating the processes of mutation/crossover and survival gives fitter and fitter popula-
tions and the hope is that finally a population might contain a ’perfect’ individual, which
in the mathematical language would be the global maximum/minimum.

Applying genetic algorithms to structural optimization is problematic for several reasons.
First, it 1s unnatural to represent atomic positions by short binary strings. A continuous
problem is in this way mapped onto a discrete problem. Second it is not quite clear how to
do the crossover in an efficient way. In order to optimize the structure of clusters, people
devised a crossover process that simply combines the parts of two clusters as shown below.
It is however questionable whether half of a cluster represents a meaningful functional

0-312

unit.

0-313

